define({ 'name' :'pandas', 'sub-menu' : [ { 'name' : 'Setup', 'snippet' : [ 'from __future__ import print_function, division', 'import pandas as pd', ], }, { 'name' : 'Documentation', 'external-link' : 'http://pandas.pydata.org/pandas-docs/stable/', }, '---', { 'name' : 'Set options', 'snippet' : [ 'pd.set_option(""display.height"", 10)', 'pd.set_option(""display.max_rows"", 20)', 'pd.set_option(""display.max_columns"", 500)', 'pd.set_option(""display.width"", 1000)', ], }, { 'name' : 'To/from file', 'sub-menu' : [ { 'name' : 'Read from CSV', 'snippet' : [ 'bp_data = pd.read_csv("path/to/file.csv", header=1, delim_whitespace=True)', ], }, { 'name' : 'Write to CSV', 'snippet' : ['bp_data.to_csv("path/to/new_file.csv", sep=" ", header=False, index=False)',], }, ], }, { 'name' : 'Deal with NaNs', 'sub-menu' : [ { 'name' : 'Filter out NaNs', 'snippet' : ['bp_data = bp_data.dropna()',], }, { 'name' : 'Replace NaNs with number', 'snippet' : ['bp_data = bp_data.fillna(0.0)',], }, ], }, { 'name' : 'Select rows', 'snippet' : ['bp_data[:5]',], }, { 'name' : 'Select by column', 'snippet' : ['bp_column = bp_data[["Column name"]]',], 'sub-menu' : [ { 'name' : 'Select single column', 'snippet' : ['bp_column = bp_data[["Column name"]]',], }, { 'name' : 'Select multiple columns', 'snippet' : [ 'bp_columns = bp_data[["Column name 1", "Column name 2", "Column name 3"]]',], }, ], }, { 'name' : 'Get numerical values from selection', 'sub-menu' : [ { 'name' : 'Select single column', 'snippet' : ['bp_num_value = bp_data[["Numerical column"]].values',], }, { 'name' : 'Select multiple columns', 'snippet' : [ 'bp_num_values = bp_data[["Numerical column 1", "Numerical column 2"]].values',], }, { 'name' : 'Select rows', 'snippet' : ['bp_num_value = bp_data[:5].values',], }, ], }, { 'name' : 'Iteration', 'snippet' : ['',], }, { 'name' : 'Grouping', 'snippet' : ['',], }, { 'name' : 'Sorting', 'snippet' : ['',], }, { 'name' : 'Combining', 'sub-menu' : [ { 'name' : 'Split-apply-combine (sum)', 'snippet' : ['df['label_count'] = df.groupby('label', as_index=False)['label'].transform(lambda x: x.count())',], }, { 'name' : 'Split-apply-combine (mean)', 'snippet' : ['df['label_mean'] = df.groupby('label', as_index=False)['label'].transform(lambda x: x.mean())',], }, ], }, { 'name' : 'Basic stats', 'sub-menu' : [ { 'name' : 'Mean', 'snippet' : ['bp_mean = bp_data[["Numerical column 1"]].mean()',], }, { 'name' : 'Mode', 'snippet' : ['bp_mode = bp_data[["Numerical column 1"]].mode()',], }, { 'name' : 'Median', 'snippet' : ['bp_median = bp_data[["Numerical column 1"]].median()',], }, { 'name' : 'Standard deviation (unbiased)', 'snippet' : ['bp_std = bp_data[["Numerical column 1"]].std()',], }, { 'name' : 'Variance (unbiased)', 'snippet' : ['bp_var = bp_data[["Numerical column 1"]].var()',], }, { 'name' : 'Skew (unbiased)', 'snippet' : ['bp_skew = bp_data[["Numerical column 1"]].skew()',], }, { 'name' : 'Kurtosis (unbiased)', 'snippet' : ['bp_kurtosis = bp_data[["Numerical column 1"]].kurt()',], }, { 'name' : 'Min', 'snippet' : ['bp_min = bp_data[["Numerical column 1"]].min()',], }, { 'name' : 'Max', 'snippet' : ['bp_max = bp_data[["Numerical column 1"]].max()',], }, { 'name' : 'Sum', 'snippet' : ['bp_sum = bp_data[["Numerical column 1"]].sum()',], }, { 'name' : 'Product', 'snippet' : ['bp_product = bp_data[["Numerical column 1"]].product()',], }, { 'name' : 'Number of elements', 'snippet' : ['bp_count = bp_data[["Numerical column 1"]].count()',], }, ], }, ], });