--- base_model: google/vit-base-patch16-224 datasets: - 0-ma/geometric-shapes license: apache-2.0 metrics: - accuracy pipeline_tag: image-classification --- # Model Card for VIT Geometric Shapes Dataset Base ## Training Dataset - **Repository:** https://huggingface.co/datasets/0-ma/geometric-shapes ## Base Model - **Repository:** https://huggingface.co/models/google/vit-base-patch16-224 ## Accuracy - Accuracy on dataset 0-ma/geometric-shapes [test] : 0.9269047619047619 # Loading and using the model import numpy as np from PIL import Image from transformers import AutoImageProcessor, AutoModelForImageClassification import requests labels = [ "None", "Circle", "Triangle", "Square", "Pentagon", "Hexagon" ] images = [Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_circle.jpg", stream=True).raw), Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_pentagone.jpg", stream=True).raw)] feature_extractor = AutoImageProcessor.from_pretrained('0-ma/vit-geometric-shapes-base') model = AutoModelForImageClassification.from_pretrained('0-ma/vit-geometric-shapes-base') inputs = feature_extractor(images=images, return_tensors="pt") logits = model(**inputs)['logits'].cpu().detach().numpy() predictions = np.argmax(logits, axis=1) predicted_labels = [labels[prediction] for prediction in predictions] print(predicted_labels) ## Model generation The model has been created using the 'train_shape_detector.py.py' of the project from the project https://github.com/0-ma/geometric-shape-detector. No external code sources were used.