--- license: apache-2.0 base_model: 02shanky/vit-finetuned-cifar10 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: vit-finetuned-vanilla-cifar10-0 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.992 --- # vit-finetuned-vanilla-cifar10-0 This model is a fine-tuned version of [02shanky/vit-finetuned-cifar10](https://huggingface.co/02shanky/vit-finetuned-cifar10) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0306 - Accuracy: 0.992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 316 | 0.0619 | 0.9836 | | 0.2651 | 2.0 | 633 | 0.0460 | 0.9867 | | 0.2651 | 3.0 | 949 | 0.0415 | 0.9878 | | 0.1967 | 4.0 | 1266 | 0.0326 | 0.9916 | | 0.1552 | 4.99 | 1580 | 0.0306 | 0.992 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1