{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f1814f2e40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689453425920761017, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJbpjD/QE0S/83LUvjirzD/OcqG/FzpNP5qUVr/cg3e/x9KoP8k3hj/FrKQ9PZCKv8z4+j7zLIU/LMz9PlR6PTxNfqC/DPEbvzP/br6KNn4/5l6jPmnaHL6Ny3i/8/7ev7FyOD+japw+Hbs+P9BjKb8FQOw+XSBav69FEr8BCWs+N2GKvjt7BsD4kiO/c2CRPjXj0b5qZNy/99RVvq8ucr//M6s/c9KVPvNvLb8X2PO+UWPhvSHyDkDV0pg9hFakvqLLGL8auzU/kKAYvzLt/j+Gp7G/o2qcPmDNq7/QYym/A/gdv9Ik574LEgs98OrAP0a4078jjSLAcohUv2NcnT9U5re/l4A4PDK0RL/G6wi+vJzWPqijU7+D4jy+83cDQEW3sT9gsY29WSaIvrPK8b6TkQY+vjIPQL8Pgr71dX5Ahqexv6NqnD5gzau/0GMpv8lnQL7jelO/OK4Fvw5rUD9R/kq/WcNsP+LDQb/FVZw+ZAusv4dTmj72/YI+GLJVPxsjyj2YLwG/+jLrPu/fEj+1+xa/Cjq9v2U3E79NaAI/2EPQP5ddA71lhZk/Clsdv7FyOD+japw+Hbs+P9BjKb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/1cK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdQ4AvQAAAADuQfS/AAAAAG6cM70AAAAAlgz7PwAAAABv1si9AAAAACbD9j8AAAAAT2AGPgAAAAAJWPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIZ8htAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgExmTbsAAAAAMb7ZvwAAAAAJlQK9AAAAAJ+v2z8AAAAAmfiXPQAAAADeKPc/AAAAACVkUz0AAAAAdqDgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRHTjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBEt3C7AAAAAIGu/78AAAAAZ4ASPgAAAABRg+U/AAAAABcY/7sAAAAAsHvgPwAAAACbO288AAAAANKB6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA8dM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZELhvQAAAABJJvS/AAAAAJVGmjwAAAAARsPfPwAAAABmVAS9AAAAAFun/D8AAAAA1noDPQAAAAACHvO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKIoVXFtKqaMAWyUTegDjAF0lEdAqzP/bdrO7nV9lChoBkdAolL18VpKz2gHTegDaAhHQKs3I3qiXY11fZQoaAZHQKFO7QQ+UyJoB03oA2gIR0CrOV4oRZlndX2UKGgGR0CiLo8tPHktaAdN6ANoCEdAqzr0V8CxNnV9lChoBkdAor0Ja5f+j2gHTegDaAhHQKtAiMDwH7h1fZQoaAZHQKMLvU0elsRoB03oA2gIR0CrQ5/95yEMdX2UKGgGR0Cit4T4DcM3aAdN6ANoCEdAq0ZZdB0IT3V9lChoBkdAozkc6T4cm2gHTegDaAhHQKtIn5gw4851fZQoaAZHQKKjffJmukloB03oA2gIR0CrUQWbG3nZdX2UKGgGR0ChheStvGZNaAdN6ANoCEdAq1QoMnZ00XV9lChoBkdAobzp68g6l2gHTegDaAhHQKtWhmnO0LN1fZQoaAZHQKGOdgwXZXdoB03oA2gIR0CrWB6/h2nsdX2UKGgGR0CinUb3oLXuaAdN6ANoCEdAq12i/47A+XV9lChoBkdAofAU5MlC1WgHTegDaAhHQKtgxM0xdpt1fZQoaAZHQKMIDAfuCwtoB03oA2gIR0CrYxbrs0HhdX2UKGgGR0CikKLGrCFcaAdN6ANoCEdAq2SdxIatLnV9lChoBkdAoiUy4UeuFGgHTegDaAhHQKts/1yNn5B1fZQoaAZHQKIHFl+3H7xoB03oA2gIR0CrcVd9Dx9YdX2UKGgGR0Chs30elsP8aAdN6ANoCEdAq3OoL5RCQnV9lChoBkdAodRzINmUW2gHTegDaAhHQKt1N2jfvWp1fZQoaAZHQJ/a9GRV6u5oB03oA2gIR0CrevFdszl+dX2UKGgGR0Cg2Xw0XP7faAdN6ANoCEdAq34PhGYrrnV9lChoBkdAnqr5gb6xgWgHTegDaAhHQKuAZyS3b211fZQoaAZHQKBuuAFxGUhoB03oA2gIR0CrggqN6w+udX2UKGgGR0CcNvO5rgwXaAdN6ANoCEdAq4kzB0p3HXV9lChoBkdAnOG++AVfu2gHTegDaAhHQKuOO+nIhhZ1fZQoaAZHQJriYnssxwhoB03oA2gIR0CrkRmXokiVdX2UKGgGR0Ca1sdUKiPAaAdN6ANoCEdAq5K40ZWJanV9lChoBkdAl+quKKpDNWgHTegDaAhHQKuYZjIaLn91fZQoaAZHQJwH3NbC79RoB03oA2gIR0Crm6PFvQ4TdX2UKGgGR0Cc7GZpBX0YaAdN6ANoCEdAq5396HCXQnV9lChoBkdAnvGHanJkoWgHTegDaAhHQKufnUXpGF11fZQoaAZHQJ85w7QswtdoB03oA2gIR0CrpdSqEOAidX2UKGgGR0Ce2W8ZUDMeaAdN6ANoCEdAq6qj3225QXV9lChoBkdAnmHHp0OmSGgHTegDaAhHQKuuSt1ZDAt1fZQoaAZHQJ98odcSoOxoB03oA2gIR0CrsBNHxz7udX2UKGgGR0Cg/vSSNfgKaAdN6ANoCEdAq7WM6T4cm3V9lChoBkdAoLO8rXlKb2gHTegDaAhHQKu4sMa0hNd1fZQoaAZHQKBWlYdQwbloB03oA2gIR0CruvOSOinHdX2UKGgGR0ChOBuPvKEGaAdN6ANoCEdAq7x/AXVLBnV9lChoBkdAoPWOPgeijGgHTegDaAhHQKvCDqwhW5p1fZQoaAZHQJ8hqqsEJSloB03oA2gIR0Crxkl/QSi/dX2UKGgGR0CgBv/c32mIaAdN6ANoCEdAq8na0hNdq3V9lChoBkdAoDYOicoYvWgHTegDaAhHQKvMVtSAH3V1fZQoaAZHQJ5IAqJ/G2loB03oA2gIR0Cr0nQxN7BwdX2UKGgGR0CfmrX7+DODaAdN6ANoCEdAq9WWwLVnVXV9lChoBkdAoLzlk8Rtg2gHTegDaAhHQKvX1E1EVnF1fZQoaAZHQJ+QdKCg9NhoB03oA2gIR0Cr2VeyquKXdX2UKGgGR0Cd0fRG+bmVaAdN6ANoCEdAq97Q2hqTKXV9lChoBkdAn+lb3bmEG2gHTegDaAhHQKvh7HFxXGR1fZQoaAZHQJ52bjebd8BoB03oA2gIR0Cr5SLt/nW8dX2UKGgGR0CgquKi48U3aAdN6ANoCEdAq+d9JQLuyHV9lChoBkdAoXdwq/dqL2gHTegDaAhHQKvvPogV45d1fZQoaAZHQKCG3StNi6RoB03oA2gIR0Cr8kutOmBOdX2UKGgGR0Cgh36WHDaXaAdN6ANoCEdAq/SYxcmjTXV9lChoBkdAoIcJjFyaNWgHTegDaAhHQKv2LKU3XI51fZQoaAZHQKB6QBClabFoB03oA2gIR0Cr+6eI2wV1dX2UKGgGR0CfxvsDnvDxaAdN6ANoCEdAq/6/i97F9HV9lChoBkdAn9oWN3np0WgHTegDaAhHQKwA+21lXil1fZQoaAZHQJ8lAyN4qw1oB03oA2gIR0CsAusS00FbdX2UKGgGR0Cck2BWgezVaAdN6ANoCEdArAsud3B55nV9lChoBkdAnYqeEqUeMmgHTegDaAhHQKwO6owVTJh1fZQoaAZHQJzL1vvSc9ZoB03oA2gIR0CsETFMyrPudX2UKGgGR0CdKnM72criaAdN6ANoCEdArBK98CxNZnV9lChoBkdAnflRVhkRSWgHTegDaAhHQKwYLFUhmoR1fZQoaAZHQJ02BwOvt+loB03oA2gIR0CsG3MZYPoWdX2UKGgGR0CeJNB3Roh7aAdN6ANoCEdArB229zwMIHV9lChoBkdAncnfr8iwCGgHTegDaAhHQKwfRwuM+/x1fZQoaAZHQJ8AOR2bG3poB03oA2gIR0CsJodZq20BdX2UKGgGR0CgL6lP8AJcaAdN6ANoCEdArCtlCeEqUnV9lChoBkdAoDiiKk2xZGgHTegDaAhHQKwt+vg3tKJ1fZQoaAZHQKCFlMewLVpoB03oA2gIR0CsL4sJ6Y3OdX2UKGgGR0ChE4ytvGZNaAdN6ANoCEdArDURZ0Syt3V9lChoBkdAoUu9PpIMB2gHTegDaAhHQKw4IivgWJt1fZQoaAZHQKDiBTQ3PzFoB03oA2gIR0CsOnRh2GIsdX2UKGgGR0Cg7yCvHLidaAdN6ANoCEdArDwQOhCdBnV9lChoBkdAoWvVKZlWfmgHTegDaAhHQKxCRR1oxpN1fZQoaAZHQKF0R4TsY2toB03oA2gIR0CsRwkw35vcdX2UKGgGR0Ce3WFPBSDRaAdN6ANoCEdArEqlWsA/93V9lChoBkdAoT2j5ylvZWgHTegDaAhHQKxMqyeqaPV1fZQoaAZHQKGgagyM1j1oB03oA2gIR0CsUjbhegL7dX2UKGgGR0Ch7pclPacqaAdN6ANoCEdArFVR99c8knV9lChoBkdAoXeFAVwgkmgHTegDaAhHQKxXmrjHXEt1fZQoaAZHQKIaK8274BVoB03oA2gIR0CsWSYMOPNndX2UKGgGR0ChcAgNPP9laAdN6ANoCEdArF69N1yNoHV9lChoBkdAoMG/UKArhGgHTegDaAhHQKxiwy2QXAN1fZQoaAZHQKAqvBF/hEVoB03oA2gIR0CsZlh9Tgl4dX2UKGgGR0Chfs0cOskqaAdN6ANoCEdArGjI7zTWoXV9lChoBkdAoX2jBGhEjWgHTegDaAhHQKxvJQrtmcx1fZQoaAZHQKF9OsHSncdoB03oA2gIR0Cscki+UQkHdX2UKGgGR0ChAMdIoVmBaAdN6ANoCEdArHSnHDJlrnV9lChoBkdAoXYdyJbdJ2gHTegDaAhHQKx2H79AHFB1fZQoaAZHQKEYv+EytV9oB03oA2gIR0Cse41OsT37dX2UKGgGR0CfqH62v0ROaAdN6ANoCEdArH6qprDZUXV9lChoBkdAoVTRyhi9ZmgHTegDaAhHQKyBrdM0xdp1fZQoaAZHQKFulPX05ENoB03oA2gIR0Csg/JdSl3ydX2UKGgGR0CiT6vgm7aqaAdN6ANoCEdArIvpz/6wdXV9lChoBkdAof1MfPomomgHTegDaAhHQKyPDksjFAF1fZQoaAZHQKG7CDU3GXJoB03oA2gIR0CskU7iADq4dX2UKGgGR0CiZZ938n/laAdN6ANoCEdArJLZXKbKBHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}