--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: eaca9fe2-5685-4ea9-a1f1-1a680dfc230e results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ccb5ebb5cae37883_train_data.json ds_type: json format: custom path: /workspace/input_data/ccb5ebb5cae37883_train_data.json type: field_input: wrong_answers field_instruction: question field_output: correct_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: 0x1202/eaca9fe2-5685-4ea9-a1f1-1a680dfc230e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ccb5ebb5cae37883_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cb18e728-ae17-4a6e-8267-1a1d19d7e070 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cb18e728-ae17-4a6e-8267-1a1d19d7e070 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# eaca9fe2-5685-4ea9-a1f1-1a680dfc230e This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 4.5821 | | 2.1705 | 0.0010 | 50 | 2.2621 | | 1.437 | 0.0019 | 100 | 2.0788 | | 1.8511 | 0.0029 | 150 | 2.0491 | | 2.1045 | 0.0039 | 200 | 2.0436 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1