--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-qqp results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: qqp split: validation args: qqp metrics: - type: accuracy value: 0.90187979223349 name: Accuracy - type: f1 value: 0.8681139665547393 name: F1 --- # distilbert-base-uncased-finetuned-qqp This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4957 - Accuracy: 0.9019 - F1: 0.8681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 0.2846 | 1.0 | 22741 | 0.2751 | 0.8823 | 0.8451 | | 0.2198 | 2.0 | 45482 | 0.2744 | 0.8989 | 0.8649 | | 0.169 | 3.0 | 68223 | 0.3182 | 0.8993 | 0.8675 | | 0.1281 | 4.0 | 90964 | 0.4432 | 0.9017 | 0.8688 | | 0.0874 | 5.0 | 113705 | 0.4957 | 0.9019 | 0.8681 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3