--- license: apache-2.0 tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-speech_commands-v0.02 results: [] --- # wav2vec2-base-finetuned-speech_commands-v0.02 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 0.1170 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9963 | 1.0 | 663 | 0.7316 | 0.9612 | | 0.4965 | 2.0 | 1326 | 0.2656 | 0.9672 | | 0.4306 | 3.0 | 1989 | 0.1630 | 0.9720 | | 0.2901 | 4.0 | 2652 | 0.1283 | 0.9753 | | 0.2963 | 5.0 | 3315 | 0.1170 | 0.9759 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3