--- library_name: peft tags: - generated_from_trainer base_model: 152334H/miqu-1-70b-sf model-index: - name: qlora-hermes results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: 152334H/miqu-1-70b-sf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: teknium/OpenHermes-2.5 type: sharegpt conversation: chatml dataset_prepared_path: hermes-prepped val_set_size: 0 output_dir: ./qlora-hermes adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: huggingface wandb_entity: 152334h wandb_watch: wandb_name: hermes2-miqu wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_sample_packing: false saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: save_safetensors: true resize_token_embeddings_to_32x: true lora_modules_to_save: - embed_tokens - lm_head special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" - "<|im_end|>" ```

# qlora-hermes This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 16 - total_train_batch_size: 192 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0