--- library_name: transformers license: apache-2.0 base_model: - llm-jp/llm-jp-3-13b pipeline_tag: text-generation --- # Model Card for Model ID llm-jp-3-13bをichikaraデータセットでファインチューニングしたモデル ## Model Details ### Model Description NEFTuneによりファインチューニングを実行 This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use ```python model_id = "1kbooks/llm-jp-3-13b-finetuned-ver2" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) input = "ここに指示を入力" with torch.no_grad(): prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id ) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] print(prediction) ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data - ichikara dataset ### Training Procedure - NEFTune