--- base_model: AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct language: - sv - da - 'no' - en pipeline_tag: text-generation inference: parameters: temperature: 0.7 tags: - translation --- # Model Card for gpt-sw3-6.7b-v2-translator The `gpt-sw3-6.7b-v2-translator` is a finetuned version of `gpt-sw3-6.7b-v2-instruct` on a carefully selected translation pair dataset that was gathered by AI Sweden. ## How to use: ```python import torch from transformers import pipeline, StoppingCriteriaList, StoppingCriteria device = "cuda" if torch.cuda.is_available() else "cpu" # (Optional) - define a stopping criteria # We ideally want the model to stop generate once the response from the Bot is generated class StopOnTokenCriteria(StoppingCriteria): def __init__(self, stop_token_id): self.stop_token_id = stop_token_id def __call__(self, input_ids, scores, **kwargs): return input_ids[0, -1] == self.stop_token_id stop_on_token_criteria = StopOnTokenCriteria(stop_token_id=2) pipe = pipeline( "text-generation", "AI-Sweden-Models/gpt-sw3-6.7b-v2-translator", device=device ) text = "I like to eat ice cream in the summer." prompt = f"<|endoftext|>User: Översätt till Svenska från Engelska\n{text}Bot:" response = pipe( prompt, max_length=768, stopping_criteria=StoppingCriteriaList([stop_on_token_criteria]) ) print(response[0]["generated_text"].split("Bot: ")[-1]) ``` ```python >>> "Jag tycker om att äta glass på sommaren." ``` ## Dataset: