--- license: apache-2.0 datasets: - AIAT/Pangpuriye-dataset language: - th - en pipeline_tag: text-generation tags: - code_generation - sql --- # ðŸĪ– [Super AI Engineer Development Program Season 4](https://superai.aiat.or.th/) - Pangpuriye Table-based Question Answering Model ![logo](https://huggingface.co/datasets/AIAT/Pangpuriye-generated_by_typhoon/resolve/main/logo/logo.png) This model was fine-tuned from the original [OpenThaiGPT-1.0.1-7b](https://huggingface.co/openthaigpt/openthaigpt-1.0.0-7b-chat). The model is set under Apache license 2.0. ## Example inference using huggingface transformers. The following code is an exmaple of how to inference our model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer import pandas as pd def get_prediction(raw_prediction): if "[/INST]" in raw_prediction: index = raw_prediction.index("[/INST]") return raw_prediction[index + 7:] return raw_prediction tokenizer = LlamaTokenizer.from_pretrained("AIAT/Pangpuriye-openthaigpt-1.0.0-7b-chat", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("AIAT/Pangpuriye-openthaigpt-1.0.0-7b-chat", trust_remote_code=True) schema = """your SQL schema""" query = "āļŦāļēāļˆāļģāļ™āļ§āļ™āļĨāļđāļāļ„āđ‰āļēāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āđ€āļžāļĻāļŠāļēāļĒ" prompt = f""" [INST] <> You are a question answering assistant. Answer the question as truthful and helpful as possible āļ„āļļāļ“āļ„āļ·āļ­āļœāļđāđ‰āļŠāđˆāļ§āļĒāļ•āļ­āļšāļ„āļģāļ–āļēāļĄ āļˆāļ‡āļ•āļ­āļšāļ„āļģāļ–āļēāļĄāļ­āļĒāđˆāļēāļ‡āļ–āļđāļāļ•āđ‰āļ­āļ‡āđāļĨāļ°āļĄāļĩāļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāļ—āļĩāđˆāļŠāļļāļ” <> {schema}### (sql extract) {query} [/INST] """ tokens = tokenizer(prompt, return_tensors="pt") output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id) print(get_prediction(tokenizer.decode(output[0], skip_special_tokens=True))) ``` ## Acknowledgements The model collaborated by the members of Panguriye's house during the LLMs hackathon in Super AI Engineer Development Program Season 4. We thank the organizers of this hackathon, [OpenThaiGPT](https://openthaigpt.aieat.or.th/), [AIAT](https://aiat.or.th/), [NECTEC](https://www.nectec.or.th/en/) and [ThaiSC](https://thaisc.io/) for this challenging task and opportunity to be a part of developing Thai large language model.