--- license: apache-2.0 datasets: - AIDC-AI/Ovis-dataset library_name: transformers tags: - MLLM pipeline_tag: image-text-to-text language: - en --- # Ovis1.6-Gemma2-9B-GPTQ-Int4
## Introduction [GitHub](https://github.com/AIDC-AI/Ovis) | [Paper](https://arxiv.org/abs/2405.20797) We are excited to announce the open-sourcing of **Ovis-1.6**, our latest multi-modal large language model. Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings.
## Model Built upon Ovis1.5, **Ovis1.6** further enhances high-resolution image processing, is trained on a larger, more diverse, and higher-quality dataset, and refines the training process with DPO training following instruction-tuning. | Ovis MLLMs | ViT | LLM | Model Weights | Demo | |:------------------|:-----------:|:------------------:|:---------------------------------------------------------------:|:----------------------------------------------------------------:| | Ovis1.6-Gemma2-9B | Siglip-400M | Gemma2-9B-It | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Gemma2-9B) | | Ovis1.6-Llama3.2-3B | Siglip-400M | Llama-3.2-3B-Instruct | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Llama3.2-3B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Llama3.2-3B) | | Ovis1.6-Gemma2-9B-GPTQ-Int4 | Siglip-400M | Gemma2-9B-It | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B-GPTQ-Int4) | - | | Ovis1.6-Llama3.2-3B-GPTQ-Int4 | Siglip-400M | Llama-3.2-3B-Instruct | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Llama3.2-3B-GPTQ-Int4) | - | ## Quantized Model We quantized Ovis1.6 with AutoGPTQ. Follow these steps to run it. ### Installation 1. Run the following commands to get a basic environment. Be sure to run with CUDA 12.1. ```bash conda create -n python=3.10 conda activate pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu121 pip install numpy==1.24.3 transformers==4.44.2 pillow==10.3.0 gekko pandas ``` 2. Build AutoGPTQ: We customized AutoGPTQ to support Ovis model quantization. You need to build from source to install the customized version. ```bash git clone https://github.com/AIDC-AI/AutoGPTQ.git cd AutoGPTQ pip install -vvv --no-build-isolation -e . ``` Check [this](https://github.com/AutoGPTQ/AutoGPTQ/issues/194) first if you are building inside a Docker container. ### Usage Below is a code snippet to run **Ovis1.6-Gemma2-9B-GPTQ-Int4** with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference). ```python import torch from PIL import Image from transformers import GenerationConfig from auto_gptq.modeling import OvisGemma2GPTQForCausalLM # load model load_device = "cuda:0" # customize load device model = OvisGemma2GPTQForCausalLM.from_pretrained( "AIDC-AI/Ovis1.6-Gemma2-9B-GPTQ-Int4", device=load_device, trust_remote_code=True ) model.model.generation_config = GenerationConfig.from_pretrained("AIDC-AI/Ovis1.6-Gemma2-9B-GPTQ-Int4") text_tokenizer = model.get_text_tokenizer() visual_tokenizer = model.get_visual_tokenizer() # enter image path and prompt image_path = input("Enter image path: ") image = Image.open(image_path) text = input("Enter prompt: ") query = f'\n{text}' # format conversation prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image]) attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) input_ids = input_ids.unsqueeze(0).to(device=model.device) attention_mask = attention_mask.unsqueeze(0).to(device=model.device) pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] # generate output with torch.inference_mode(): gen_kwargs = dict( max_new_tokens=1024, do_sample=False, top_p=None, top_k=None, temperature=None, repetition_penalty=None, eos_token_id=model.generation_config.eos_token_id, pad_token_id=text_tokenizer.pad_token_id, use_cache=True ) output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0] output = text_tokenizer.decode(output_ids, skip_special_tokens=True) print(f'Output:\n{output}') ```
Batch inference ```python batch_inputs = [ ('example_image1.jpeg', 'Describe the content of this image.'), ('example_image2.jpeg', 'What is the equation in the image?') ] batch_input_ids = [] batch_attention_mask = [] batch_pixel_values = [] for image_path, text in batch_inputs: image = Image.open(image_path) query = f'\n{text}' prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image]) attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) input_ids = input_ids.unsqueeze(0).to(device=model.device) attention_mask = attention_mask.unsqueeze(0).to(device=model.device) pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] batch_input_ids.append(input_ids.squeeze()) batch_attention_mask.append(attention_mask.squeeze()) batch_pixel_values.append(pixel_values) pad_batch_input_ids = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_input_ids],batch_first=True, padding_value=0.0).flip(dims=[1]) pad_batch_input_ids = pad_batch_input_ids[:,-model.config.multimodal_max_length:] pad_batch_attention_mask = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_attention_mask],batch_first=True, padding_value=False).flip(dims=[1]) pad_batch_attention_mask = pad_batch_attention_mask[:,-model.config.multimodal_max_length:] pad_batch_pixel_values = [item for sublist in batch_pixel_values for item in sublist] # generate output with torch.inference_mode(): gen_kwargs = dict( max_new_tokens=1024, do_sample=False, top_p=None, top_k=None, temperature=None, repetition_penalty=None, eos_token_id=model.generation_config.eos_token_id, pad_token_id=text_tokenizer.pad_token_id, use_cache=True ) output_ids = model.generate(pad_batch_input_ids, pixel_values=pad_batch_pixel_values, attention_mask=pad_batch_attention_mask, **gen_kwargs) for i in range(len(batch_input_ids)): output = text_tokenizer.decode(output_ids[i], skip_special_tokens=True) print(f'Output_{i}:\n{output}') ```
## Quantize Your Own Ovis Model with AutoGPTQ We provide a demonstration code snippet for you to quantize your own fine-tuned **Ovis1.6-Gemma2-9B** model. Before running the code, you need to **follow the ABOVE installation steps** to obtain an environment for quantization. ```python from typing import Dict, Sequence, Union, List import copy import logging from auto_gptq import BaseQuantizeConfig from auto_gptq.modeling import OvisGemma2GPTQForCausalLM import torch from torch.utils.data import Dataset, DataLoader from PIL import Image # Specify paths and hyperparameters for quantization model_path = "path/to/finetuned/model" quantize_save_path = "path/to/save/quantized/model" IGNORE_ID = -100 device_idx = 2 # you customize torch.cuda.set_device(device_idx) quantize_config = BaseQuantizeConfig( bits=4, # 4 or 8 group_size=128, damp_percent=0.1, desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad static_groups=False, sym=True, true_sequential=True, ) # Load model model = OvisGemma2GPTQForCausalLM.from_pretrained( model_path, quantize_config, torch_dtype=torch.bfloat16, multimodal_max_length=8192, trust_remote_code=True ).cuda() print(f"Model Loaded!") # prepare calibration samples class CalibrationDataset(Dataset): """ Dataset class for calibration. Initialize with the loaded Ovis model, and a sample list in the following format: data_list = [ { "image": "path/to/image/of/this/sample", "conversations": [ { "from": "human", "value": "\n[Your sample prompt]" }, { "from": "gpt", "value": "[Anything]" } ] }, ... ] """ def __init__(self, model, text_max_length, data_list: List[Dict]): self.data = data_list self.model = model self.visual_tokenizer = model.get_visual_tokenizer() self.text_max_length = text_max_length def __len__(self): return len(self.data) def __getitem__(self, i: int) -> Dict[str, torch.Tensor]: sample = self.data[i] conversations = copy.deepcopy(sample["conversations"]) images = [Image.open(sample['image'])] max_partition = 9 prompt, input_ids, pixel_values, labels = self.model.preprocess_inputs( conversations, images, max_partition=max_partition, generation_preface=None, return_labels=True, propagate_exception=False ) if pixel_values is None: pixel_values, _ = self.visual_tokenizer.mock_input() input_ids = input_ids[:self.text_max_length] labels = labels[:self.text_max_length] return dict( pixel_values=pixel_values, input_ids=input_ids, labels=labels ) class DataCollatorForMultimodalDatasetGPTQ: def __init__(self, text_tokenizer): self.text_tokenizer = text_tokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, Union[torch.Tensor, List[torch.Tensor]]]: pixel_values, input_ids, labels = tuple([instance[key] for instance in instances] for key in ("pixel_values", "input_ids", "labels")) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.text_tokenizer.pad_token_id) attention_mask = torch.ne(input_ids, self.text_tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence( labels, batch_first=True, padding_value=IGNORE_ID) num_valid_label = torch.not_equal(labels, IGNORE_ID).sum().item() if num_valid_label == 0: logging.warning( f'[DataCollatorForMultimodalDatasetGPTQ] All labels are ignored, may causing training instability\n{input_ids=}\n{attention_mask=}\n{labels=}') return dict( input_ids=input_ids, attention_mask=attention_mask, labels=labels, pixel_values=pixel_values ) class MyDataLoader(DataLoader): def __len__(self): return len(self.dataset) // self.batch_size # must set drop last=True # prepare your own calibration samples here data_list = [ { "image": "path/to/image/of/this/sample", "conversations": [ { "from": "human", "value": "\n[Your sample prompt]" }, { "from": "gpt", "value": "[Anything]" } ] } ] train_dataset = CalibrationDataset(model, text_max_length=832, data_list=data_list) print(f"Dataset Loaded!") print(f"Total length of the training set: {len(train_dataset)}") train_loader = MyDataLoader( train_dataset, collate_fn=DataCollatorForMultimodalDatasetGPTQ(model.get_text_tokenizer()), shuffle=False, batch_size=4, drop_last=True, pin_memory=True, num_workers=8 ) print(f"Dataloader Loaded!") # start quantizing model.quantize(train_loader, cache_examples_on_gpu=False) print(f"Model Quantized! Now Saving...") model.save_quantized(quantize_save_path, use_safetensors=True) print(f"ALL Done!") ``` ## Performance Here we report the performance of Ovis1.6-Gemma2-9B-GPTQ-Int4. The results are obtained with VLMEvalkit. Benchmark: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cb4b4a03f3ebb0bde20e0/LF_UjJ3XUgKkLGpi-_tZ1.png) VRAM usage: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cb4b4a03f3ebb0bde20e0/uMlWV-bncO3IZnrW_hDY7.png) ## Citation If you find Ovis useful, please cite the paper ``` @article{lu2024ovis, title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model}, author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye}, year={2024}, journal={arXiv:2405.20797} } ``` ## License This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0). ## Disclaimer We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.