--- license: apache-2.0 datasets: - argilla/ultrafeedback-binarized-preferences-cleaned language: - en base_model: - mistralai/Mistral-7B-v0.1 library_name: transformers tags: - transformers ---

✨ Introducing ElEmperador! ✨

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e8ea3892d9db9a93580fe3/gkDcpIxRCjBlmknN_jzWN.png) # Introduction: ElEmperador is an ORPO finetinue derived from the Mistral-7B-v0.1 base model. The argilla/ultrafeedback-binarized-preferences-cleaned dataset was used to improve the performance of the model. ## Model Evals will be posted soon. The model recipe: https://github.com/ParagEkbote/El-Emperador_ModelRecipe ## Inference Script: ```yaml def generate_response(model_name, input_text, max_new_tokens=50): # Load the tokenizer and model from Hugging Face Hub tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Tokenize the input text input_ids = tokenizer(input_text, return_tensors='pt').input_ids # Generate a response using the model with torch.no_grad(): generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens) # Decode the generated tokens into text generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_text if __name__ == "__main__": # Set the model name from Hugging Face Hub model_name = "AINovice2005/ElEmperador" input_text = "Hello, how are you?" # Generate and print the model's response output = generate_response(model_name, input_text) print(f"Input: {input_text}") print(f"Output: {output}")