--- tags: - dna - human_genome --- # GENA-LM (gena-lm-bigbird-base-sparse-t2t) GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences. GENA-LM models are transformer masked language models trained on human DNA sequence. `gena-lm-bigbird-base-sparse-t2t` follows the BigBird architecture and uses sparse attention from DeepSpeed. Differences between GENA-LM (`gena-lm-bigbird-base-sparse-t2t`) and DNABERT: - BPE tokenization instead of k-mers; - input sequence size is about 36000 nucleotides (4096 BPE tokens) compared to 512 nucleotides of DNABERT; - pre-training on T2T vs. GRCh38.p13 human genome assembly. Source code and data: https://github.com/AIRI-Institute/GENA_LM Paper: https://academic.oup.com/nar/article/53/2/gkae1310/7954523 ## Installation `gena-lm-bigbird-base-sparse-t2t` sparse ops require DeepSpeed. ### DeepSpeed DeepSpeed installation is needed to work with SparseAttention versions of language models. DeepSpeed Sparse attention supports only GPUs with compute compatibility >= 7 (V100, T4, A100). ```bash pip install triton==1.0.0 DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.6.0 --global-option="build_ext" --global-option="-j8" --no-cache ``` and check installation with ```bash ds_report ``` ### APEX for FP16 Install APEX https://github.com/NVIDIA/apex#quick-start ``` git clone https://github.com/NVIDIA/apex cd apex pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ ``` ## Examples ### How to load pre-trained model for Masked Language Modeling ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t') model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', trust_remote_code=True) ``` ### How to load pre-trained model to fine-tune it on classification task Get model class from GENA-LM repository: ```bash git clone https://github.com/AIRI-Institute/GENA_LM.git ``` ```python from GENA_LM.src.gena_lm.modeling_bert import BertForSequenceClassification from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t') model = BertForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t') ``` or you can just download [modeling_bert.py](https://github.com/AIRI-Institute/GENA_LM/tree/main/src/gena_lm) and put it close to your code. OR you can get model class from HuggingFace AutoModel: ```python from transformers import AutoTokenizer, AutoModel model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', trust_remote_code=True) gena_module_name = model.__class__.__module__ print(gena_module_name) import importlib # available class names: # - BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, # - BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification, # - BertForQuestionAnswering # check https://huggingface.co/docs/transformers/model_doc/bert cls = getattr(importlib.import_module(gena_module_name), 'BertForSequenceClassification') print(cls) model = cls.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', num_labels=2) ``` ## Model description GENA-LM (`gena-lm-bigbird-base-sparse-t2t`) model is trained in a masked language model (MLM) fashion, following the methods proposed in the BigBird paper by masking 15% of tokens. Model config for `gena-lm-bigbird-base-sparse-t2t` is similar to the `google/bigbird-roberta-base`: - 4096 Maximum sequence length - 12 Layers, 12 Attention heads - 768 Hidden size - sparse config: - block size: 64 - random blocks: 3 - global blocks: 2 - sliding window blocks: 3 - Rotary positional embeddings - 32k Vocabulary size, tokenizer trained on DNA data. We pre-trained `gena-lm-bigbird-base-sparse-t2t` using the latest T2T human genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.3/). The data was augmented by sampling mutations from 1000-genome SNPs (gnomAD dataset). Pre-training was performed for 800,000 iterations with batch size 256. We modified Transformer with [Pre-Layer normalization](https://arxiv.org/abs/2002.04745). ## Evaluation For evaluation results, see our paper: https://academic.oup.com/nar/article/53/2/gkae1310/7954523 ## Citation ```bibtex @article{GENA_LM, author = {Fishman, Veniamin and Kuratov, Yuri and Shmelev, Aleksei and Petrov, Maxim and Penzar, Dmitry and Shepelin, Denis and Chekanov, Nikolay and Kardymon, Olga and Burtsev, Mikhail}, title = {GENA-LM: a family of open-source foundational DNA language models for long sequences}, journal = {Nucleic Acids Research}, volume = {53}, number = {2}, pages = {gkae1310}, year = {2025}, month = {01}, issn = {0305-1048}, doi = {10.1093/nar/gkae1310}, url = {https://doi.org/10.1093/nar/gkae1310}, eprint = {https://academic.oup.com/nar/article-pdf/53/2/gkae1310/61443229/gkae1310.pdf}, } ```