--- license: apache-2.0 language: - en base_model: - Qwen/Qwen2-VL-2B-Instruct tags: - food - recipe --- # Adapting Multimodal Large Language Models to Domains via Post-Training This repos contains the **food MLLM developed from Qwen-2-VL-2B-Instruct** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains/edit/main/README.md) We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. **(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.** **(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. **(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks.

## Resources **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗** | Model | Repo ID in HF 🤗 | Domain | Base Model | Training Data | Evaluation Benchmark | |:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------| | [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - | | [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | | [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | | [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | | [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | | [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | | [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | **Code**: [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer) ## 1. To Chat with AdaMLLM Our model architecture aligns with the base model: Qwen-2-VL-Instruct. We provide a usage example below, and you may refer to the official [Qwen-2-VL-Instruct repository](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) for more advanced usage instructions. **Note:** For AdaMLLM, always place the image at the beginning of the input instruction in the messages.
Click to expand 1. Set up ```bash pip install qwen-vl-utils ``` 2. Inference ```python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "AdaptLLM/food-Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto" ) # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. # model = Qwen2VLForConditionalGeneration.from_pretrained( # "AdaptLLM/food-Qwen2-VL-2B-Instruct", # torch_dtype=torch.bfloat16, # attn_implementation="flash_attention_2", # device_map="auto", # ) # default processer processor = AutoProcessor.from_pretrained("AdaptLLM/food-Qwen2-VL-2B-Instruct") # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. # min_pixels = 256*28*28 # max_pixels = 1280*28*28 # processor = AutoProcessor.from_pretrained("AdaptLLM/food-Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) # NOTE: For AdaMLLM, always place the image at the beginning of the input instruction in the messages. messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ```
## 2. To Evaluate Any MLLM on Domain-Specific Benchmarks Refer to the [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) to reproduce our results and evaluate many other MLLMs on domain-specific benchmarks. ## 3. To Reproduce this Domain-Adapted MLLM See [Post-Train Guide](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Post_Train.md) to adapt MLLMs to domains. ## Citation If you find our work helpful, please cite us. [AdaMLLM](https://huggingface.co/papers/2411.19930) ```bibtex @article{adamllm, title={On Domain-Specific Post-Training for Multimodal Large Language Models}, author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang}, journal={arXiv preprint arXiv:2411.19930}, year={2024} } ``` [Instruction Pre-Training](https://huggingface.co/papers/2406.14491) (EMNLP 2024) ```bibtex @article{cheng2024instruction, title={Instruction Pre-Training: Language Models are Supervised Multitask Learners}, author={Cheng, Daixuan and Gu, Yuxian and Huang, Shaohan and Bi, Junyu and Huang, Minlie and Wei, Furu}, journal={arXiv preprint arXiv:2406.14491}, year={2024} } ``` [Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024) ```bibtex @inproceedings{ cheng2024adapting, title={Adapting Large Language Models via Reading Comprehension}, author={Daixuan Cheng and Shaohan Huang and Furu Wei}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=y886UXPEZ0} } ```