--- license: other library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: llama3-gaja-v0.1 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: CognitiveLab/Samvaad_Hindi_Hinglish_Llama3_Prompt_formate type: completion field: text dataset_prepared_path: val_set_size: 0.05 output_dir: ./llama3-gaja-v0.1 sequence_len: 8000 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama3-gaja-v0.1 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 6 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# llama3-gaja-v0.1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8709 | 0.0 | 1 | 1.8383 | | 1.1106 | 0.25 | 128 | 1.0989 | | 1.0379 | 0.5 | 256 | 1.0510 | | 1.0402 | 0.75 | 384 | 1.0386 | | 1.0703 | 1.0 | 512 | 1.0365 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0