--- language: - ar license: mit base_model: distil-whisper/distil-large-v2 tags: - generated_from_trainer datasets: - nadsoft/Jordan-Audio metrics: - wer model-index: - name: Hamsa distill alfa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nadsoft/Jordan-Audio type: nadsoft/Jordan-Audio metrics: - name: Wer type: wer value: 54.11225658648339 --- # Hamsa distill alfa This model is a fine-tuned version of [distil-whisper/distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) on the nadsoft/Jordan-Audio dataset. It achieves the following results on the evaluation set: - Loss: 0.8474 - Wer Ortho: 56.1657 - Wer: 54.1123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.7394 | 1.76 | 500 | 0.8474 | 56.1657 | 54.1123 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1