--- language: - zh license: apache-2.0 library_name: peft tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_15_0 base_model: openai/whisper-small model-index: - name: Whisper small TW - AlanDlink results: [] --- # Whisper small TW - AlanDlink This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 15.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2151 | 1.33 | 1000 | 2.1197 | | 0.5107 | 2.67 | 2000 | 0.4872 | | 0.294 | 4.0 | 3000 | 0.2780 | | 0.229 | 5.33 | 4000 | 0.2428 | | 0.2193 | 6.67 | 5000 | 0.2278 | | 0.2292 | 8.0 | 6000 | 0.2213 | | 0.2288 | 9.33 | 7000 | 0.2184 | | 0.2065 | 10.67 | 8000 | 0.2175 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0