--- license: apache-2.0 base_model: - Qwen/Qwen2-VL-2B-Instruct language: - en - zh tags: - mteb - sentence-transformers - transformers - Qwen2-VL - sentence-similarity - vidore model-index: - name: external results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cos_sim_pearson value: 61.03190209456061 - type: cos_sim_spearman value: 67.54853383020948 - type: euclidean_pearson value: 65.38958681599493 - type: euclidean_spearman value: 67.54853383020948 - type: manhattan_pearson value: 65.25341659273157 - type: manhattan_spearman value: 67.34190190683134 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cos_sim_pearson value: 50.83794357648487 - type: cos_sim_spearman value: 54.03230997664373 - type: euclidean_pearson value: 55.2072028123375 - type: euclidean_spearman value: 54.032311102613264 - type: manhattan_pearson value: 55.05163232251946 - type: manhattan_spearman value: 53.81272176804127 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 72.55223880597015 - type: ap value: 35.01515316721116 - type: f1 value: 66.44086070814382 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 96.75819999999999 - type: ap value: 95.51009242092881 - type: f1 value: 96.75713119357414 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 61.971999999999994 - type: f1 value: 60.50745575187704 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 53.49 - type: f1 value: 51.576550662258434 - task: type: Retrieval dataset: type: mteb/arguana name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 36.272999999999996 - type: map_at_10 value: 52.782 - type: map_at_100 value: 53.339999999999996 - type: map_at_1000 value: 53.342999999999996 - type: map_at_3 value: 48.4 - type: map_at_5 value: 50.882000000000005 - type: mrr_at_1 value: 36.984 - type: mrr_at_10 value: 53.052 - type: mrr_at_100 value: 53.604 - type: mrr_at_1000 value: 53.607000000000006 - type: mrr_at_3 value: 48.613 - type: mrr_at_5 value: 51.159 - type: ndcg_at_1 value: 36.272999999999996 - type: ndcg_at_10 value: 61.524 - type: ndcg_at_100 value: 63.796 - type: ndcg_at_1000 value: 63.869 - type: ndcg_at_3 value: 52.456 - type: ndcg_at_5 value: 56.964000000000006 - type: precision_at_1 value: 36.272999999999996 - type: precision_at_10 value: 8.926 - type: precision_at_100 value: 0.989 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 21.407999999999998 - type: precision_at_5 value: 15.049999999999999 - type: recall_at_1 value: 36.272999999999996 - type: recall_at_10 value: 89.25999999999999 - type: recall_at_100 value: 98.933 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 64.225 - type: recall_at_5 value: 75.249 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 52.45236368396085 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 46.83781937870832 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.653430349851746 - type: mrr value: 74.28736314470387 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.18568151905953 - type: cos_sim_spearman value: 86.47666922475281 - type: euclidean_pearson value: 87.25416218056225 - type: euclidean_spearman value: 86.47666922475281 - type: manhattan_pearson value: 87.04960508086356 - type: manhattan_spearman value: 86.73992823533615 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cos_sim_pearson value: 75.7464284612374 - type: cos_sim_spearman value: 77.71894224189296 - type: euclidean_pearson value: 77.63454068918787 - type: euclidean_spearman value: 77.71894224189296 - type: manhattan_pearson value: 77.58744810404339 - type: manhattan_spearman value: 77.63293552726073 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 80.2435064935065 - type: f1 value: 79.44078343737895 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 44.68220155432257 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 40.666150477589284 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: v_measure value: 44.23533333311907 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: v_measure value: 43.01114481307774 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 86.4349853821696 - type: mrr value: 88.80150793650795 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 87.56417400982208 - type: mrr value: 89.85813492063491 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 30.623 - type: map_at_10 value: 40.482 - type: map_at_100 value: 41.997 - type: map_at_1000 value: 42.135 - type: map_at_3 value: 37.754 - type: map_at_5 value: 39.031 - type: mrr_at_1 value: 37.482 - type: mrr_at_10 value: 46.311 - type: mrr_at_100 value: 47.211999999999996 - type: mrr_at_1000 value: 47.27 - type: mrr_at_3 value: 44.157999999999994 - type: mrr_at_5 value: 45.145 - type: ndcg_at_1 value: 37.482 - type: ndcg_at_10 value: 46.142 - type: ndcg_at_100 value: 51.834 - type: ndcg_at_1000 value: 54.164 - type: ndcg_at_3 value: 42.309000000000005 - type: ndcg_at_5 value: 43.485 - type: precision_at_1 value: 37.482 - type: precision_at_10 value: 8.455 - type: precision_at_100 value: 1.3780000000000001 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 20.172 - type: precision_at_5 value: 13.705 - type: recall_at_1 value: 30.623 - type: recall_at_10 value: 56.77100000000001 - type: recall_at_100 value: 80.034 - type: recall_at_1000 value: 94.62899999999999 - type: recall_at_3 value: 44.663000000000004 - type: recall_at_5 value: 48.692 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 27.941 - type: map_at_10 value: 38.437 - type: map_at_100 value: 39.625 - type: map_at_1000 value: 39.753 - type: map_at_3 value: 35.388999999999996 - type: map_at_5 value: 37.113 - type: mrr_at_1 value: 34.522000000000006 - type: mrr_at_10 value: 43.864999999999995 - type: mrr_at_100 value: 44.533 - type: mrr_at_1000 value: 44.580999999999996 - type: mrr_at_3 value: 41.55 - type: mrr_at_5 value: 42.942 - type: ndcg_at_1 value: 34.522000000000006 - type: ndcg_at_10 value: 44.330000000000005 - type: ndcg_at_100 value: 48.61 - type: ndcg_at_1000 value: 50.712999999999994 - type: ndcg_at_3 value: 39.834 - type: ndcg_at_5 value: 42.016 - type: precision_at_1 value: 34.522000000000006 - type: precision_at_10 value: 8.471 - type: precision_at_100 value: 1.3379999999999999 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 19.363 - type: precision_at_5 value: 13.898 - type: recall_at_1 value: 27.941 - type: recall_at_10 value: 55.336 - type: recall_at_100 value: 73.51100000000001 - type: recall_at_1000 value: 86.636 - type: recall_at_3 value: 42.54 - type: recall_at_5 value: 48.392 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 32.681 - type: map_at_10 value: 45.48 - type: map_at_100 value: 46.542 - type: map_at_1000 value: 46.604 - type: map_at_3 value: 42.076 - type: map_at_5 value: 44.076 - type: mrr_at_1 value: 37.492 - type: mrr_at_10 value: 48.746 - type: mrr_at_100 value: 49.485 - type: mrr_at_1000 value: 49.517 - type: mrr_at_3 value: 45.998 - type: mrr_at_5 value: 47.681000000000004 - type: ndcg_at_1 value: 37.492 - type: ndcg_at_10 value: 51.778999999999996 - type: ndcg_at_100 value: 56.294 - type: ndcg_at_1000 value: 57.58 - type: ndcg_at_3 value: 45.856 - type: ndcg_at_5 value: 48.968 - type: precision_at_1 value: 37.492 - type: precision_at_10 value: 8.620999999999999 - type: precision_at_100 value: 1.189 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 20.773 - type: precision_at_5 value: 14.596 - type: recall_at_1 value: 32.681 - type: recall_at_10 value: 67.196 - type: recall_at_100 value: 87.027 - type: recall_at_1000 value: 96.146 - type: recall_at_3 value: 51.565000000000005 - type: recall_at_5 value: 59.123999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 22.421 - type: map_at_10 value: 30.127 - type: map_at_100 value: 31.253999999999998 - type: map_at_1000 value: 31.344 - type: map_at_3 value: 27.673 - type: map_at_5 value: 29.182000000000002 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.857000000000003 - type: mrr_at_100 value: 32.808 - type: mrr_at_1000 value: 32.881 - type: mrr_at_3 value: 29.397000000000002 - type: mrr_at_5 value: 30.883 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 34.642 - type: ndcg_at_100 value: 40.327 - type: ndcg_at_1000 value: 42.55 - type: ndcg_at_3 value: 29.868 - type: ndcg_at_5 value: 32.461 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.390000000000001 - type: precision_at_100 value: 0.873 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 12.692999999999998 - type: precision_at_5 value: 9.107 - type: recall_at_1 value: 22.421 - type: recall_at_10 value: 46.846 - type: recall_at_100 value: 73.409 - type: recall_at_1000 value: 90.06 - type: recall_at_3 value: 34.198 - type: recall_at_5 value: 40.437 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 16.494 - type: map_at_10 value: 24.4 - type: map_at_100 value: 25.718999999999998 - type: map_at_1000 value: 25.840000000000003 - type: map_at_3 value: 21.731 - type: map_at_5 value: 23.247999999999998 - type: mrr_at_1 value: 20.274 - type: mrr_at_10 value: 28.866000000000003 - type: mrr_at_100 value: 29.889 - type: mrr_at_1000 value: 29.957 - type: mrr_at_3 value: 26.284999999999997 - type: mrr_at_5 value: 27.79 - type: ndcg_at_1 value: 20.274 - type: ndcg_at_10 value: 29.666999999999998 - type: ndcg_at_100 value: 36.095 - type: ndcg_at_1000 value: 38.87 - type: ndcg_at_3 value: 24.672 - type: ndcg_at_5 value: 27.106 - type: precision_at_1 value: 20.274 - type: precision_at_10 value: 5.5969999999999995 - type: precision_at_100 value: 1.04 - type: precision_at_1000 value: 0.14100000000000001 - type: precision_at_3 value: 12.023 - type: precision_at_5 value: 8.98 - type: recall_at_1 value: 16.494 - type: recall_at_10 value: 41.400999999999996 - type: recall_at_100 value: 69.811 - type: recall_at_1000 value: 89.422 - type: recall_at_3 value: 27.834999999999997 - type: recall_at_5 value: 33.774 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 26.150000000000002 - type: map_at_10 value: 36.012 - type: map_at_100 value: 37.377 - type: map_at_1000 value: 37.497 - type: map_at_3 value: 32.712 - type: map_at_5 value: 34.475 - type: mrr_at_1 value: 32.05 - type: mrr_at_10 value: 41.556 - type: mrr_at_100 value: 42.451 - type: mrr_at_1000 value: 42.498000000000005 - type: mrr_at_3 value: 38.659 - type: mrr_at_5 value: 40.314 - type: ndcg_at_1 value: 32.05 - type: ndcg_at_10 value: 42.132 - type: ndcg_at_100 value: 48.028999999999996 - type: ndcg_at_1000 value: 50.229 - type: ndcg_at_3 value: 36.622 - type: ndcg_at_5 value: 39.062000000000005 - type: precision_at_1 value: 32.05 - type: precision_at_10 value: 7.767 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 17.355999999999998 - type: precision_at_5 value: 12.474 - type: recall_at_1 value: 26.150000000000002 - type: recall_at_10 value: 55.205000000000005 - type: recall_at_100 value: 80.2 - type: recall_at_1000 value: 94.524 - type: recall_at_3 value: 39.322 - type: recall_at_5 value: 45.761 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 23.741 - type: map_at_10 value: 33.51 - type: map_at_100 value: 34.882999999999996 - type: map_at_1000 value: 34.995 - type: map_at_3 value: 30.514000000000003 - type: map_at_5 value: 32.085 - type: mrr_at_1 value: 28.653000000000002 - type: mrr_at_10 value: 38.059 - type: mrr_at_100 value: 39.050000000000004 - type: mrr_at_1000 value: 39.107 - type: mrr_at_3 value: 35.445 - type: mrr_at_5 value: 36.849 - type: ndcg_at_1 value: 28.653000000000002 - type: ndcg_at_10 value: 39.186 - type: ndcg_at_100 value: 45.301 - type: ndcg_at_1000 value: 47.547 - type: ndcg_at_3 value: 34.103 - type: ndcg_at_5 value: 36.239 - type: precision_at_1 value: 28.653000000000002 - type: precision_at_10 value: 7.295 - type: precision_at_100 value: 1.2189999999999999 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 16.438 - type: precision_at_5 value: 11.804 - type: recall_at_1 value: 23.741 - type: recall_at_10 value: 51.675000000000004 - type: recall_at_100 value: 78.13799999999999 - type: recall_at_1000 value: 93.12700000000001 - type: recall_at_3 value: 37.033 - type: recall_at_5 value: 42.793 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 25.281666666666663 - type: map_at_10 value: 34.080666666666666 - type: map_at_100 value: 35.278749999999995 - type: map_at_1000 value: 35.40183333333333 - type: map_at_3 value: 31.45316666666667 - type: map_at_5 value: 32.92716666666667 - type: mrr_at_1 value: 29.78783333333333 - type: mrr_at_10 value: 38.077333333333335 - type: mrr_at_100 value: 38.936499999999995 - type: mrr_at_1000 value: 39.000249999999994 - type: mrr_at_3 value: 35.7735 - type: mrr_at_5 value: 37.07683333333334 - type: ndcg_at_1 value: 29.78783333333333 - type: ndcg_at_10 value: 39.18300000000001 - type: ndcg_at_100 value: 44.444750000000006 - type: ndcg_at_1000 value: 46.90316666666667 - type: ndcg_at_3 value: 34.69308333333333 - type: ndcg_at_5 value: 36.80316666666666 - type: precision_at_1 value: 29.78783333333333 - type: precision_at_10 value: 6.820749999999999 - type: precision_at_100 value: 1.1224166666666666 - type: precision_at_1000 value: 0.1525 - type: precision_at_3 value: 15.936333333333335 - type: precision_at_5 value: 11.282333333333334 - type: recall_at_1 value: 25.281666666666663 - type: recall_at_10 value: 50.282 - type: recall_at_100 value: 73.54558333333334 - type: recall_at_1000 value: 90.64241666666666 - type: recall_at_3 value: 37.800999999999995 - type: recall_at_5 value: 43.223000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 23.452 - type: map_at_10 value: 30.231 - type: map_at_100 value: 31.227 - type: map_at_1000 value: 31.338 - type: map_at_3 value: 28.083000000000002 - type: map_at_5 value: 29.125 - type: mrr_at_1 value: 25.613000000000003 - type: mrr_at_10 value: 32.62 - type: mrr_at_100 value: 33.469 - type: mrr_at_1000 value: 33.554 - type: mrr_at_3 value: 30.368000000000002 - type: mrr_at_5 value: 31.502999999999997 - type: ndcg_at_1 value: 25.613000000000003 - type: ndcg_at_10 value: 34.441 - type: ndcg_at_100 value: 39.253 - type: ndcg_at_1000 value: 42.105 - type: ndcg_at_3 value: 30.183 - type: ndcg_at_5 value: 31.917 - type: precision_at_1 value: 25.613000000000003 - type: precision_at_10 value: 5.367999999999999 - type: precision_at_100 value: 0.848 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 12.73 - type: precision_at_5 value: 8.773 - type: recall_at_1 value: 23.452 - type: recall_at_10 value: 45.021 - type: recall_at_100 value: 66.563 - type: recall_at_1000 value: 87.713 - type: recall_at_3 value: 33.433 - type: recall_at_5 value: 37.637 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 16.11 - type: map_at_10 value: 22.832 - type: map_at_100 value: 23.829 - type: map_at_1000 value: 23.959 - type: map_at_3 value: 20.66 - type: map_at_5 value: 21.851000000000003 - type: mrr_at_1 value: 19.408 - type: mrr_at_10 value: 26.354 - type: mrr_at_100 value: 27.237000000000002 - type: mrr_at_1000 value: 27.32 - type: mrr_at_3 value: 24.243000000000002 - type: mrr_at_5 value: 25.430000000000003 - type: ndcg_at_1 value: 19.408 - type: ndcg_at_10 value: 27.239 - type: ndcg_at_100 value: 32.286 - type: ndcg_at_1000 value: 35.498000000000005 - type: ndcg_at_3 value: 23.244 - type: ndcg_at_5 value: 25.080999999999996 - type: precision_at_1 value: 19.408 - type: precision_at_10 value: 4.917 - type: precision_at_100 value: 0.874 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 10.863 - type: precision_at_5 value: 7.887 - type: recall_at_1 value: 16.11 - type: recall_at_10 value: 37.075 - type: recall_at_100 value: 60.251999999999995 - type: recall_at_1000 value: 83.38600000000001 - type: recall_at_3 value: 25.901999999999997 - type: recall_at_5 value: 30.612000000000002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 25.941 - type: map_at_10 value: 33.711999999999996 - type: map_at_100 value: 34.926 - type: map_at_1000 value: 35.05 - type: map_at_3 value: 31.075000000000003 - type: map_at_5 value: 32.611000000000004 - type: mrr_at_1 value: 30.784 - type: mrr_at_10 value: 38.079 - type: mrr_at_100 value: 39.018 - type: mrr_at_1000 value: 39.09 - type: mrr_at_3 value: 35.603 - type: mrr_at_5 value: 36.988 - type: ndcg_at_1 value: 30.784 - type: ndcg_at_10 value: 38.586 - type: ndcg_at_100 value: 44.205 - type: ndcg_at_1000 value: 46.916000000000004 - type: ndcg_at_3 value: 33.899 - type: ndcg_at_5 value: 36.11 - type: precision_at_1 value: 30.784 - type: precision_at_10 value: 6.409 - type: precision_at_100 value: 1.034 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 15.112 - type: precision_at_5 value: 10.728 - type: recall_at_1 value: 25.941 - type: recall_at_10 value: 49.242999999999995 - type: recall_at_100 value: 73.85000000000001 - type: recall_at_1000 value: 92.782 - type: recall_at_3 value: 36.204 - type: recall_at_5 value: 41.908 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 24.401999999999997 - type: map_at_10 value: 33.195 - type: map_at_100 value: 34.699999999999996 - type: map_at_1000 value: 34.946 - type: map_at_3 value: 30.570999999999998 - type: map_at_5 value: 32.0 - type: mrr_at_1 value: 28.656 - type: mrr_at_10 value: 37.039 - type: mrr_at_100 value: 38.049 - type: mrr_at_1000 value: 38.108 - type: mrr_at_3 value: 34.717 - type: mrr_at_5 value: 36.07 - type: ndcg_at_1 value: 28.656 - type: ndcg_at_10 value: 38.557 - type: ndcg_at_100 value: 44.511 - type: ndcg_at_1000 value: 47.346 - type: ndcg_at_3 value: 34.235 - type: ndcg_at_5 value: 36.260999999999996 - type: precision_at_1 value: 28.656 - type: precision_at_10 value: 7.312 - type: precision_at_100 value: 1.451 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 15.942 - type: precision_at_5 value: 11.66 - type: recall_at_1 value: 24.401999999999997 - type: recall_at_10 value: 48.791000000000004 - type: recall_at_100 value: 76.211 - type: recall_at_1000 value: 93.92 - type: recall_at_3 value: 36.975 - type: recall_at_5 value: 42.01 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 19.07 - type: map_at_10 value: 26.608999999999998 - type: map_at_100 value: 27.625 - type: map_at_1000 value: 27.743000000000002 - type: map_at_3 value: 24.532999999999998 - type: map_at_5 value: 25.671 - type: mrr_at_1 value: 20.518 - type: mrr_at_10 value: 28.541 - type: mrr_at_100 value: 29.453000000000003 - type: mrr_at_1000 value: 29.536 - type: mrr_at_3 value: 26.71 - type: mrr_at_5 value: 27.708 - type: ndcg_at_1 value: 20.518 - type: ndcg_at_10 value: 30.855 - type: ndcg_at_100 value: 35.973 - type: ndcg_at_1000 value: 38.827 - type: ndcg_at_3 value: 26.868 - type: ndcg_at_5 value: 28.74 - type: precision_at_1 value: 20.518 - type: precision_at_10 value: 4.843 - type: precision_at_100 value: 0.799 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 11.645 - type: precision_at_5 value: 8.133 - type: recall_at_1 value: 19.07 - type: recall_at_10 value: 41.925000000000004 - type: recall_at_100 value: 65.68 - type: recall_at_1000 value: 86.713 - type: recall_at_3 value: 31.251 - type: recall_at_5 value: 35.653 - task: type: Retrieval dataset: type: mteb/climate-fever name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 18.762 - type: map_at_10 value: 32.412 - type: map_at_100 value: 34.506 - type: map_at_1000 value: 34.678 - type: map_at_3 value: 27.594 - type: map_at_5 value: 30.128 - type: mrr_at_1 value: 42.345 - type: mrr_at_10 value: 54.443 - type: mrr_at_100 value: 55.05799999999999 - type: mrr_at_1000 value: 55.076 - type: mrr_at_3 value: 51.553000000000004 - type: mrr_at_5 value: 53.269 - type: ndcg_at_1 value: 42.345 - type: ndcg_at_10 value: 42.304 - type: ndcg_at_100 value: 49.425000000000004 - type: ndcg_at_1000 value: 52.123 - type: ndcg_at_3 value: 36.271 - type: ndcg_at_5 value: 38.216 - type: precision_at_1 value: 42.345 - type: precision_at_10 value: 12.808 - type: precision_at_100 value: 2.062 - type: precision_at_1000 value: 0.258 - type: precision_at_3 value: 26.840000000000003 - type: precision_at_5 value: 20.052 - type: recall_at_1 value: 18.762 - type: recall_at_10 value: 47.976 - type: recall_at_100 value: 71.86 - type: recall_at_1000 value: 86.61999999999999 - type: recall_at_3 value: 32.708999999999996 - type: recall_at_5 value: 39.151 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: map_at_1 value: 24.871 - type: map_at_10 value: 37.208999999999996 - type: map_at_100 value: 38.993 - type: map_at_1000 value: 39.122 - type: map_at_3 value: 33.2 - type: map_at_5 value: 35.33 - type: mrr_at_1 value: 37.884 - type: mrr_at_10 value: 46.189 - type: mrr_at_100 value: 47.147 - type: mrr_at_1000 value: 47.195 - type: mrr_at_3 value: 43.728 - type: mrr_at_5 value: 44.994 - type: ndcg_at_1 value: 37.884 - type: ndcg_at_10 value: 43.878 - type: ndcg_at_100 value: 51.002 - type: ndcg_at_1000 value: 53.161 - type: ndcg_at_3 value: 38.729 - type: ndcg_at_5 value: 40.628 - type: precision_at_1 value: 37.884 - type: precision_at_10 value: 9.75 - type: precision_at_100 value: 1.558 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 21.964 - type: precision_at_5 value: 15.719 - type: recall_at_1 value: 24.871 - type: recall_at_10 value: 54.615 - type: recall_at_100 value: 84.276 - type: recall_at_1000 value: 98.578 - type: recall_at_3 value: 38.936 - type: recall_at_5 value: 45.061 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 metrics: - type: cos_sim_accuracy value: 76.12748045700542 - type: cos_sim_ap value: 84.47948419710998 - type: cos_sim_f1 value: 77.88108108108108 - type: cos_sim_precision value: 72.43112809169516 - type: cos_sim_recall value: 84.21790974982464 - type: dot_accuracy value: 76.12748045700542 - type: dot_ap value: 84.4933237839786 - type: dot_f1 value: 77.88108108108108 - type: dot_precision value: 72.43112809169516 - type: dot_recall value: 84.21790974982464 - type: euclidean_accuracy value: 76.12748045700542 - type: euclidean_ap value: 84.47947997540409 - type: euclidean_f1 value: 77.88108108108108 - type: euclidean_precision value: 72.43112809169516 - type: euclidean_recall value: 84.21790974982464 - type: manhattan_accuracy value: 75.40589296452195 - type: manhattan_ap value: 83.74383956930585 - type: manhattan_f1 value: 77.0983342289092 - type: manhattan_precision value: 71.34049323786795 - type: manhattan_recall value: 83.86719663315408 - type: max_accuracy value: 76.12748045700542 - type: max_ap value: 84.4933237839786 - type: max_f1 value: 77.88108108108108 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: map_at_1 value: 66.781 - type: map_at_10 value: 74.539 - type: map_at_100 value: 74.914 - type: map_at_1000 value: 74.921 - type: map_at_3 value: 72.734 - type: map_at_5 value: 73.788 - type: mrr_at_1 value: 66.913 - type: mrr_at_10 value: 74.543 - type: mrr_at_100 value: 74.914 - type: mrr_at_1000 value: 74.921 - type: mrr_at_3 value: 72.831 - type: mrr_at_5 value: 73.76899999999999 - type: ndcg_at_1 value: 67.018 - type: ndcg_at_10 value: 78.34299999999999 - type: ndcg_at_100 value: 80.138 - type: ndcg_at_1000 value: 80.322 - type: ndcg_at_3 value: 74.667 - type: ndcg_at_5 value: 76.518 - type: precision_at_1 value: 67.018 - type: precision_at_10 value: 9.115 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 26.906000000000002 - type: precision_at_5 value: 17.092 - type: recall_at_1 value: 66.781 - type: recall_at_10 value: 90.253 - type: recall_at_100 value: 98.52499999999999 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 80.05799999999999 - type: recall_at_5 value: 84.615 - task: type: Retrieval dataset: type: mteb/dbpedia name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.685 - type: map_at_10 value: 21.65 - type: map_at_100 value: 30.952 - type: map_at_1000 value: 33.049 - type: map_at_3 value: 14.953 - type: map_at_5 value: 17.592 - type: mrr_at_1 value: 72.0 - type: mrr_at_10 value: 78.054 - type: mrr_at_100 value: 78.41900000000001 - type: mrr_at_1000 value: 78.425 - type: mrr_at_3 value: 76.5 - type: mrr_at_5 value: 77.28699999999999 - type: ndcg_at_1 value: 61.25000000000001 - type: ndcg_at_10 value: 46.306000000000004 - type: ndcg_at_100 value: 50.867 - type: ndcg_at_1000 value: 58.533 - type: ndcg_at_3 value: 50.857 - type: ndcg_at_5 value: 48.283 - type: precision_at_1 value: 72.0 - type: precision_at_10 value: 37.3 - type: precision_at_100 value: 11.95 - type: precision_at_1000 value: 2.528 - type: precision_at_3 value: 53.583000000000006 - type: precision_at_5 value: 46.6 - type: recall_at_1 value: 9.685 - type: recall_at_10 value: 27.474999999999998 - type: recall_at_100 value: 56.825 - type: recall_at_1000 value: 81.792 - type: recall_at_3 value: 15.939 - type: recall_at_5 value: 19.853 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: map_at_1 value: 24.528 - type: map_at_10 value: 76.304 - type: map_at_100 value: 79.327 - type: map_at_1000 value: 79.373 - type: map_at_3 value: 52.035 - type: map_at_5 value: 66.074 - type: mrr_at_1 value: 86.05000000000001 - type: mrr_at_10 value: 90.74 - type: mrr_at_100 value: 90.809 - type: mrr_at_1000 value: 90.81099999999999 - type: mrr_at_3 value: 90.30799999999999 - type: mrr_at_5 value: 90.601 - type: ndcg_at_1 value: 86.05000000000001 - type: ndcg_at_10 value: 84.518 - type: ndcg_at_100 value: 87.779 - type: ndcg_at_1000 value: 88.184 - type: ndcg_at_3 value: 82.339 - type: ndcg_at_5 value: 81.613 - type: precision_at_1 value: 86.05000000000001 - type: precision_at_10 value: 40.945 - type: precision_at_100 value: 4.787 - type: precision_at_1000 value: 0.48900000000000005 - type: precision_at_3 value: 74.117 - type: precision_at_5 value: 62.86000000000001 - type: recall_at_1 value: 24.528 - type: recall_at_10 value: 86.78 - type: recall_at_100 value: 97.198 - type: recall_at_1000 value: 99.227 - type: recall_at_3 value: 54.94799999999999 - type: recall_at_5 value: 72.053 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: map_at_1 value: 52.1 - type: map_at_10 value: 62.502 - type: map_at_100 value: 63.026 - type: map_at_1000 value: 63.04 - type: map_at_3 value: 59.782999999999994 - type: map_at_5 value: 61.443000000000005 - type: mrr_at_1 value: 52.1 - type: mrr_at_10 value: 62.502 - type: mrr_at_100 value: 63.026 - type: mrr_at_1000 value: 63.04 - type: mrr_at_3 value: 59.782999999999994 - type: mrr_at_5 value: 61.443000000000005 - type: ndcg_at_1 value: 52.1 - type: ndcg_at_10 value: 67.75999999999999 - type: ndcg_at_100 value: 70.072 - type: ndcg_at_1000 value: 70.441 - type: ndcg_at_3 value: 62.28 - type: ndcg_at_5 value: 65.25800000000001 - type: precision_at_1 value: 52.1 - type: precision_at_10 value: 8.43 - type: precision_at_100 value: 0.946 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 23.166999999999998 - type: precision_at_5 value: 15.340000000000002 - type: recall_at_1 value: 52.1 - type: recall_at_10 value: 84.3 - type: recall_at_100 value: 94.6 - type: recall_at_1000 value: 97.5 - type: recall_at_3 value: 69.5 - type: recall_at_5 value: 76.7 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 62.805000000000014 - type: f1 value: 56.401757250989384 - task: type: Retrieval dataset: type: mteb/fever name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 83.734 - type: map_at_10 value: 90.089 - type: map_at_100 value: 90.274 - type: map_at_1000 value: 90.286 - type: map_at_3 value: 89.281 - type: map_at_5 value: 89.774 - type: mrr_at_1 value: 90.039 - type: mrr_at_10 value: 94.218 - type: mrr_at_100 value: 94.24 - type: mrr_at_1000 value: 94.24 - type: mrr_at_3 value: 93.979 - type: mrr_at_5 value: 94.137 - type: ndcg_at_1 value: 90.039 - type: ndcg_at_10 value: 92.597 - type: ndcg_at_100 value: 93.147 - type: ndcg_at_1000 value: 93.325 - type: ndcg_at_3 value: 91.64999999999999 - type: ndcg_at_5 value: 92.137 - type: precision_at_1 value: 90.039 - type: precision_at_10 value: 10.809000000000001 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 34.338 - type: precision_at_5 value: 21.089 - type: recall_at_1 value: 83.734 - type: recall_at_10 value: 96.161 - type: recall_at_100 value: 98.137 - type: recall_at_1000 value: 99.182 - type: recall_at_3 value: 93.551 - type: recall_at_5 value: 94.878 - task: type: Retrieval dataset: type: mteb/fiqa name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 24.529999999999998 - type: map_at_10 value: 37.229 - type: map_at_100 value: 39.333 - type: map_at_1000 value: 39.491 - type: map_at_3 value: 32.177 - type: map_at_5 value: 35.077999999999996 - type: mrr_at_1 value: 45.678999999999995 - type: mrr_at_10 value: 53.952 - type: mrr_at_100 value: 54.727000000000004 - type: mrr_at_1000 value: 54.761 - type: mrr_at_3 value: 51.568999999999996 - type: mrr_at_5 value: 52.973000000000006 - type: ndcg_at_1 value: 45.678999999999995 - type: ndcg_at_10 value: 45.297 - type: ndcg_at_100 value: 52.516 - type: ndcg_at_1000 value: 55.16 - type: ndcg_at_3 value: 40.569 - type: ndcg_at_5 value: 42.49 - type: precision_at_1 value: 45.678999999999995 - type: precision_at_10 value: 12.269 - type: precision_at_100 value: 1.9709999999999999 - type: precision_at_1000 value: 0.244 - type: precision_at_3 value: 25.72 - type: precision_at_5 value: 19.66 - type: recall_at_1 value: 24.529999999999998 - type: recall_at_10 value: 51.983999999999995 - type: recall_at_100 value: 78.217 - type: recall_at_1000 value: 94.104 - type: recall_at_3 value: 36.449999999999996 - type: recall_at_5 value: 43.336999999999996 - task: type: Retrieval dataset: type: mteb/hotpotqa name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 41.519 - type: map_at_10 value: 64.705 - type: map_at_100 value: 65.554 - type: map_at_1000 value: 65.613 - type: map_at_3 value: 61.478 - type: map_at_5 value: 63.55800000000001 - type: mrr_at_1 value: 83.038 - type: mrr_at_10 value: 87.82900000000001 - type: mrr_at_100 value: 87.96000000000001 - type: mrr_at_1000 value: 87.96300000000001 - type: mrr_at_3 value: 87.047 - type: mrr_at_5 value: 87.546 - type: ndcg_at_1 value: 83.038 - type: ndcg_at_10 value: 72.928 - type: ndcg_at_100 value: 75.778 - type: ndcg_at_1000 value: 76.866 - type: ndcg_at_3 value: 68.46600000000001 - type: ndcg_at_5 value: 71.036 - type: precision_at_1 value: 83.038 - type: precision_at_10 value: 15.040999999999999 - type: precision_at_100 value: 1.7260000000000002 - type: precision_at_1000 value: 0.187 - type: precision_at_3 value: 43.597 - type: precision_at_5 value: 28.188999999999997 - type: recall_at_1 value: 41.519 - type: recall_at_10 value: 75.20599999999999 - type: recall_at_100 value: 86.3 - type: recall_at_1000 value: 93.437 - type: recall_at_3 value: 65.39500000000001 - type: recall_at_5 value: 70.473 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 52.04309349749903 - type: f1 value: 39.91893257315586 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 96.0428 - type: ap value: 94.48278082595033 - type: f1 value: 96.0409595432081 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 85.60975609756099 - type: ap value: 54.30148799475452 - type: f1 value: 80.55899583002706 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cos_sim_pearson value: 66.44418108776416 - type: cos_sim_spearman value: 72.79912770347306 - type: euclidean_pearson value: 71.11194894579198 - type: euclidean_spearman value: 72.79912104971427 - type: manhattan_pearson value: 70.96800061808604 - type: manhattan_spearman value: 72.63525186107175 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 metrics: - type: map value: 27.9616280919871 - type: mrr value: 26.544047619047618 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: map_at_1 value: 68.32300000000001 - type: map_at_10 value: 77.187 - type: map_at_100 value: 77.496 - type: map_at_1000 value: 77.503 - type: map_at_3 value: 75.405 - type: map_at_5 value: 76.539 - type: mrr_at_1 value: 70.616 - type: mrr_at_10 value: 77.703 - type: mrr_at_100 value: 77.97699999999999 - type: mrr_at_1000 value: 77.984 - type: mrr_at_3 value: 76.139 - type: mrr_at_5 value: 77.125 - type: ndcg_at_1 value: 70.616 - type: ndcg_at_10 value: 80.741 - type: ndcg_at_100 value: 82.123 - type: ndcg_at_1000 value: 82.32300000000001 - type: ndcg_at_3 value: 77.35600000000001 - type: ndcg_at_5 value: 79.274 - type: precision_at_1 value: 70.616 - type: precision_at_10 value: 9.696 - type: precision_at_100 value: 1.038 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 29.026000000000003 - type: precision_at_5 value: 18.433 - type: recall_at_1 value: 68.32300000000001 - type: recall_at_10 value: 91.186 - type: recall_at_100 value: 97.439 - type: recall_at_1000 value: 99.004 - type: recall_at_3 value: 82.218 - type: recall_at_5 value: 86.797 - task: type: Retrieval dataset: type: mteb/msmarco name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 21.496000000000002 - type: map_at_10 value: 33.82 - type: map_at_100 value: 35.013 - type: map_at_1000 value: 35.063 - type: map_at_3 value: 29.910999999999998 - type: map_at_5 value: 32.086 - type: mrr_at_1 value: 22.092 - type: mrr_at_10 value: 34.404 - type: mrr_at_100 value: 35.534 - type: mrr_at_1000 value: 35.577999999999996 - type: mrr_at_3 value: 30.544 - type: mrr_at_5 value: 32.711 - type: ndcg_at_1 value: 22.092 - type: ndcg_at_10 value: 40.877 - type: ndcg_at_100 value: 46.619 - type: ndcg_at_1000 value: 47.823 - type: ndcg_at_3 value: 32.861000000000004 - type: ndcg_at_5 value: 36.769 - type: precision_at_1 value: 22.092 - type: precision_at_10 value: 6.54 - type: precision_at_100 value: 0.943 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 14.069 - type: precision_at_5 value: 10.424 - type: recall_at_1 value: 21.496000000000002 - type: recall_at_10 value: 62.67 - type: recall_at_100 value: 89.24499999999999 - type: recall_at_1000 value: 98.312 - type: recall_at_3 value: 40.796 - type: recall_at_5 value: 50.21600000000001 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.74555403556772 - type: f1 value: 95.61381879323093 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 85.82763337893297 - type: f1 value: 63.17139719465236 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 78.51714862138535 - type: f1 value: 76.3995118440293 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.78143913920646 - type: f1 value: 72.6141122227626 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 80.03698722259583 - type: f1 value: 79.36511484240766 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.98722259583053 - type: f1 value: 76.5974920207624 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: map_at_1 value: 51.800000000000004 - type: map_at_10 value: 57.938 - type: map_at_100 value: 58.494 - type: map_at_1000 value: 58.541 - type: map_at_3 value: 56.617 - type: map_at_5 value: 57.302 - type: mrr_at_1 value: 51.800000000000004 - type: mrr_at_10 value: 57.938 - type: mrr_at_100 value: 58.494 - type: mrr_at_1000 value: 58.541 - type: mrr_at_3 value: 56.617 - type: mrr_at_5 value: 57.302 - type: ndcg_at_1 value: 51.800000000000004 - type: ndcg_at_10 value: 60.891 - type: ndcg_at_100 value: 63.897000000000006 - type: ndcg_at_1000 value: 65.231 - type: ndcg_at_3 value: 58.108000000000004 - type: ndcg_at_5 value: 59.343 - type: precision_at_1 value: 51.800000000000004 - type: precision_at_10 value: 7.02 - type: precision_at_100 value: 0.8500000000000001 - type: precision_at_1000 value: 0.096 - type: precision_at_3 value: 20.8 - type: precision_at_5 value: 13.08 - type: recall_at_1 value: 51.800000000000004 - type: recall_at_10 value: 70.19999999999999 - type: recall_at_100 value: 85.0 - type: recall_at_1000 value: 95.7 - type: recall_at_3 value: 62.4 - type: recall_at_5 value: 65.4 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 38.68901889835701 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 38.0740589898848 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 33.41312482460189 - type: mrr value: 34.713530863302495 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 80.39333333333335 - type: f1 value: 80.42683132366277 - task: type: Retrieval dataset: type: mteb/nfcorpus name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 6.232 - type: map_at_10 value: 13.442000000000002 - type: map_at_100 value: 17.443 - type: map_at_1000 value: 19.1 - type: map_at_3 value: 9.794 - type: map_at_5 value: 11.375 - type: mrr_at_1 value: 50.15500000000001 - type: mrr_at_10 value: 58.628 - type: mrr_at_100 value: 59.077 - type: mrr_at_1000 value: 59.119 - type: mrr_at_3 value: 56.914 - type: mrr_at_5 value: 57.921 - type: ndcg_at_1 value: 48.762 - type: ndcg_at_10 value: 37.203 - type: ndcg_at_100 value: 34.556 - type: ndcg_at_1000 value: 43.601 - type: ndcg_at_3 value: 43.004 - type: ndcg_at_5 value: 40.181 - type: precision_at_1 value: 50.15500000000001 - type: precision_at_10 value: 27.276 - type: precision_at_100 value: 8.981 - type: precision_at_1000 value: 2.228 - type: precision_at_3 value: 39.628 - type: precision_at_5 value: 33.808 - type: recall_at_1 value: 6.232 - type: recall_at_10 value: 18.137 - type: recall_at_100 value: 36.101 - type: recall_at_1000 value: 68.733 - type: recall_at_3 value: 10.978 - type: recall_at_5 value: 13.718 - task: type: Retrieval dataset: type: mteb/nq name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 35.545 - type: map_at_10 value: 52.083 - type: map_at_100 value: 52.954 - type: map_at_1000 value: 52.96999999999999 - type: map_at_3 value: 47.508 - type: map_at_5 value: 50.265 - type: mrr_at_1 value: 40.122 - type: mrr_at_10 value: 54.567 - type: mrr_at_100 value: 55.19199999999999 - type: mrr_at_1000 value: 55.204 - type: mrr_at_3 value: 51.043000000000006 - type: mrr_at_5 value: 53.233 - type: ndcg_at_1 value: 40.122 - type: ndcg_at_10 value: 60.012 - type: ndcg_at_100 value: 63.562 - type: ndcg_at_1000 value: 63.94 - type: ndcg_at_3 value: 51.681 - type: ndcg_at_5 value: 56.154 - type: precision_at_1 value: 40.122 - type: precision_at_10 value: 9.774 - type: precision_at_100 value: 1.176 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 23.426 - type: precision_at_5 value: 16.686 - type: recall_at_1 value: 35.545 - type: recall_at_10 value: 81.557 - type: recall_at_100 value: 96.729 - type: recall_at_1000 value: 99.541 - type: recall_at_3 value: 60.185 - type: recall_at_5 value: 70.411 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cos_sim_accuracy value: 70.7634001082837 - type: cos_sim_ap value: 74.97527385556558 - type: cos_sim_f1 value: 72.77277277277277 - type: cos_sim_precision value: 69.17221693625119 - type: cos_sim_recall value: 76.76874340021119 - type: dot_accuracy value: 70.7634001082837 - type: dot_ap value: 74.97527385556558 - type: dot_f1 value: 72.77277277277277 - type: dot_precision value: 69.17221693625119 - type: dot_recall value: 76.76874340021119 - type: euclidean_accuracy value: 70.7634001082837 - type: euclidean_ap value: 74.97527385556558 - type: euclidean_f1 value: 72.77277277277277 - type: euclidean_precision value: 69.17221693625119 - type: euclidean_recall value: 76.76874340021119 - type: manhattan_accuracy value: 69.89713048186248 - type: manhattan_ap value: 74.25943370061067 - type: manhattan_f1 value: 72.17268887846082 - type: manhattan_precision value: 64.94932432432432 - type: manhattan_recall value: 81.20380147835269 - type: max_accuracy value: 70.7634001082837 - type: max_ap value: 74.97527385556558 - type: max_f1 value: 72.77277277277277 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 92.92000000000002 - type: ap value: 91.98475625106201 - type: f1 value: 92.91841470541901 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cos_sim_pearson value: 41.23764415526825 - type: cos_sim_spearman value: 46.872669471694664 - type: euclidean_pearson value: 46.434144530918566 - type: euclidean_spearman value: 46.872669471694664 - type: manhattan_pearson value: 46.39678126910133 - type: manhattan_spearman value: 46.55877754642116 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 metrics: - type: cos_sim_pearson value: 28.77503601696299 - type: cos_sim_spearman value: 31.818095557325606 - type: euclidean_pearson value: 29.811479220397125 - type: euclidean_spearman value: 31.817046821577673 - type: manhattan_pearson value: 29.901628633314214 - type: manhattan_spearman value: 31.991472038092084 - task: type: Retrieval dataset: type: mteb/quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 68.908 - type: map_at_10 value: 83.19 - type: map_at_100 value: 83.842 - type: map_at_1000 value: 83.858 - type: map_at_3 value: 80.167 - type: map_at_5 value: 82.053 - type: mrr_at_1 value: 79.46 - type: mrr_at_10 value: 86.256 - type: mrr_at_100 value: 86.37 - type: mrr_at_1000 value: 86.371 - type: mrr_at_3 value: 85.177 - type: mrr_at_5 value: 85.908 - type: ndcg_at_1 value: 79.5 - type: ndcg_at_10 value: 87.244 - type: ndcg_at_100 value: 88.532 - type: ndcg_at_1000 value: 88.626 - type: ndcg_at_3 value: 84.161 - type: ndcg_at_5 value: 85.835 - type: precision_at_1 value: 79.5 - type: precision_at_10 value: 13.339 - type: precision_at_100 value: 1.53 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 36.97 - type: precision_at_5 value: 24.384 - type: recall_at_1 value: 68.908 - type: recall_at_10 value: 95.179 - type: recall_at_100 value: 99.579 - type: recall_at_1000 value: 99.964 - type: recall_at_3 value: 86.424 - type: recall_at_5 value: 91.065 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 65.17897847862794 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 66.22194961632586 - task: type: Retrieval dataset: type: mteb/scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 5.668 - type: map_at_10 value: 13.921 - type: map_at_100 value: 16.391 - type: map_at_1000 value: 16.749 - type: map_at_3 value: 10.001999999999999 - type: map_at_5 value: 11.974 - type: mrr_at_1 value: 27.800000000000004 - type: mrr_at_10 value: 39.290000000000006 - type: mrr_at_100 value: 40.313 - type: mrr_at_1000 value: 40.355999999999995 - type: mrr_at_3 value: 35.667 - type: mrr_at_5 value: 37.742 - type: ndcg_at_1 value: 27.800000000000004 - type: ndcg_at_10 value: 23.172 - type: ndcg_at_100 value: 32.307 - type: ndcg_at_1000 value: 38.048 - type: ndcg_at_3 value: 22.043 - type: ndcg_at_5 value: 19.287000000000003 - type: precision_at_1 value: 27.800000000000004 - type: precision_at_10 value: 11.95 - type: precision_at_100 value: 2.5260000000000002 - type: precision_at_1000 value: 0.38999999999999996 - type: precision_at_3 value: 20.433 - type: precision_at_5 value: 16.84 - type: recall_at_1 value: 5.668 - type: recall_at_10 value: 24.22 - type: recall_at_100 value: 51.217 - type: recall_at_1000 value: 79.10000000000001 - type: recall_at_3 value: 12.443 - type: recall_at_5 value: 17.068 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.83535239748218 - type: cos_sim_spearman value: 73.98553311584509 - type: euclidean_pearson value: 79.57336200069007 - type: euclidean_spearman value: 73.98553926018461 - type: manhattan_pearson value: 79.02277757114132 - type: manhattan_spearman value: 73.52350678760683 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 81.99055838690317 - type: cos_sim_spearman value: 72.05290668592296 - type: euclidean_pearson value: 81.7130610313565 - type: euclidean_spearman value: 72.0529066787229 - type: manhattan_pearson value: 82.09213883730894 - type: manhattan_spearman value: 72.5171577483134 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.4685161191763 - type: cos_sim_spearman value: 84.4847436140129 - type: euclidean_pearson value: 84.05016757016948 - type: euclidean_spearman value: 84.48474353891532 - type: manhattan_pearson value: 83.83064062713048 - type: manhattan_spearman value: 84.30431591842805 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.00171021092486 - type: cos_sim_spearman value: 77.91329577609622 - type: euclidean_pearson value: 81.49758593915315 - type: euclidean_spearman value: 77.91329577609622 - type: manhattan_pearson value: 81.23255996803785 - type: manhattan_spearman value: 77.80027024941825 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.62608607472492 - type: cos_sim_spearman value: 87.62293916855751 - type: euclidean_pearson value: 87.04313886714989 - type: euclidean_spearman value: 87.62293907119869 - type: manhattan_pearson value: 86.97266321040769 - type: manhattan_spearman value: 87.61807042381702 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 80.8012095789289 - type: cos_sim_spearman value: 81.91868918081325 - type: euclidean_pearson value: 81.2267973811213 - type: euclidean_spearman value: 81.91868918081325 - type: manhattan_pearson value: 81.0173457901168 - type: manhattan_spearman value: 81.79743115887055 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.39698537303725 - type: cos_sim_spearman value: 88.78668529808967 - type: euclidean_pearson value: 88.78863351718252 - type: euclidean_spearman value: 88.78668529808967 - type: manhattan_pearson value: 88.41678215762478 - type: manhattan_spearman value: 88.3827998418763 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 68.49024974161408 - type: cos_sim_spearman value: 69.19917146180619 - type: euclidean_pearson value: 70.48882819806336 - type: euclidean_spearman value: 69.19917146180619 - type: manhattan_pearson value: 70.86827961779932 - type: manhattan_spearman value: 69.38456983992613 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 67.41628669863584 - type: cos_sim_spearman value: 67.87238206703478 - type: euclidean_pearson value: 67.67834985311778 - type: euclidean_spearman value: 67.87238206703478 - type: manhattan_pearson value: 68.23423896742973 - type: manhattan_spearman value: 68.27069260687092 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cos_sim_pearson value: 77.31628954400037 - type: cos_sim_spearman value: 76.83296022489624 - type: euclidean_pearson value: 76.69680425261211 - type: euclidean_spearman value: 76.83287843321102 - type: manhattan_pearson value: 76.65603163327958 - type: manhattan_spearman value: 76.80803503360451 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.31376078795105 - type: cos_sim_spearman value: 83.3985199217591 - type: euclidean_pearson value: 84.06630133719332 - type: euclidean_spearman value: 83.3985199217591 - type: manhattan_pearson value: 83.7896654474364 - type: manhattan_spearman value: 83.1885039212299 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 85.83161002188668 - type: mrr value: 96.19253114351153 - task: type: Retrieval dataset: type: mteb/scifact name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 48.132999999999996 - type: map_at_10 value: 58.541 - type: map_at_100 value: 59.34 - type: map_at_1000 value: 59.367999999999995 - type: map_at_3 value: 55.191 - type: map_at_5 value: 57.084 - type: mrr_at_1 value: 51.0 - type: mrr_at_10 value: 59.858 - type: mrr_at_100 value: 60.474000000000004 - type: mrr_at_1000 value: 60.501000000000005 - type: mrr_at_3 value: 57.111000000000004 - type: mrr_at_5 value: 58.694 - type: ndcg_at_1 value: 51.0 - type: ndcg_at_10 value: 63.817 - type: ndcg_at_100 value: 67.229 - type: ndcg_at_1000 value: 67.94 - type: ndcg_at_3 value: 57.896 - type: ndcg_at_5 value: 60.785999999999994 - type: precision_at_1 value: 51.0 - type: precision_at_10 value: 8.933 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 23.111 - type: precision_at_5 value: 15.733 - type: recall_at_1 value: 48.132999999999996 - type: recall_at_10 value: 78.922 - type: recall_at_100 value: 94.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 62.806 - type: recall_at_5 value: 70.078 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.88415841584158 - type: cos_sim_ap value: 97.72557886493401 - type: cos_sim_f1 value: 94.1294530858003 - type: cos_sim_precision value: 94.46122860020141 - type: cos_sim_recall value: 93.8 - type: dot_accuracy value: 99.88415841584158 - type: dot_ap value: 97.72557439066108 - type: dot_f1 value: 94.1294530858003 - type: dot_precision value: 94.46122860020141 - type: dot_recall value: 93.8 - type: euclidean_accuracy value: 99.88415841584158 - type: euclidean_ap value: 97.72557439066108 - type: euclidean_f1 value: 94.1294530858003 - type: euclidean_precision value: 94.46122860020141 - type: euclidean_recall value: 93.8 - type: manhattan_accuracy value: 99.88514851485148 - type: manhattan_ap value: 97.73324334051959 - type: manhattan_f1 value: 94.1825476429288 - type: manhattan_precision value: 94.46680080482898 - type: manhattan_recall value: 93.89999999999999 - type: max_accuracy value: 99.88514851485148 - type: max_ap value: 97.73324334051959 - type: max_f1 value: 94.1825476429288 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 72.8168026381278 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 44.30948635130784 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 54.11268548719803 - type: mrr value: 55.08079747050335 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.82885852096243 - type: cos_sim_spearman value: 30.800770979226076 - type: dot_pearson value: 30.82885608827704 - type: dot_spearman value: 30.800770979226076 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 66.73038448968596 - type: mrr value: 77.26510193334836 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: map_at_1 value: 28.157 - type: map_at_10 value: 79.00399999999999 - type: map_at_100 value: 82.51899999999999 - type: map_at_1000 value: 82.577 - type: map_at_3 value: 55.614 - type: map_at_5 value: 68.292 - type: mrr_at_1 value: 91.167 - type: mrr_at_10 value: 93.391 - type: mrr_at_100 value: 93.467 - type: mrr_at_1000 value: 93.47 - type: mrr_at_3 value: 93.001 - type: mrr_at_5 value: 93.254 - type: ndcg_at_1 value: 91.167 - type: ndcg_at_10 value: 86.155 - type: ndcg_at_100 value: 89.425 - type: ndcg_at_1000 value: 89.983 - type: ndcg_at_3 value: 87.516 - type: ndcg_at_5 value: 86.148 - type: precision_at_1 value: 91.167 - type: precision_at_10 value: 42.697 - type: precision_at_100 value: 5.032 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 76.45100000000001 - type: precision_at_5 value: 64.051 - type: recall_at_1 value: 28.157 - type: recall_at_10 value: 84.974 - type: recall_at_100 value: 95.759 - type: recall_at_1000 value: 98.583 - type: recall_at_3 value: 57.102 - type: recall_at_5 value: 71.383 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 55.031 - type: f1 value: 53.07992810732314 - task: type: Retrieval dataset: type: mteb/trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.20400000000000001 - type: map_at_10 value: 1.27 - type: map_at_100 value: 7.993 - type: map_at_1000 value: 20.934 - type: map_at_3 value: 0.469 - type: map_at_5 value: 0.716 - type: mrr_at_1 value: 76.0 - type: mrr_at_10 value: 84.967 - type: mrr_at_100 value: 84.967 - type: mrr_at_1000 value: 84.967 - type: mrr_at_3 value: 83.667 - type: mrr_at_5 value: 84.967 - type: ndcg_at_1 value: 69.0 - type: ndcg_at_10 value: 59.243 - type: ndcg_at_100 value: 48.784 - type: ndcg_at_1000 value: 46.966 - type: ndcg_at_3 value: 64.14 - type: ndcg_at_5 value: 61.60600000000001 - type: precision_at_1 value: 76.0 - type: precision_at_10 value: 62.6 - type: precision_at_100 value: 50.18 - type: precision_at_1000 value: 21.026 - type: precision_at_3 value: 68.667 - type: precision_at_5 value: 66.0 - type: recall_at_1 value: 0.20400000000000001 - type: recall_at_10 value: 1.582 - type: recall_at_100 value: 11.988 - type: recall_at_1000 value: 44.994 - type: recall_at_3 value: 0.515 - type: recall_at_5 value: 0.844 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: v_measure value: 72.80915114296552 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: v_measure value: 70.86374654127641 - task: type: Retrieval dataset: type: mteb/touche2020 name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.3009999999999997 - type: map_at_10 value: 11.566 - type: map_at_100 value: 17.645 - type: map_at_1000 value: 19.206 - type: map_at_3 value: 6.986000000000001 - type: map_at_5 value: 8.716 - type: mrr_at_1 value: 42.857 - type: mrr_at_10 value: 58.287 - type: mrr_at_100 value: 59.111000000000004 - type: mrr_at_1000 value: 59.111000000000004 - type: mrr_at_3 value: 55.102 - type: mrr_at_5 value: 57.449 - type: ndcg_at_1 value: 39.796 - type: ndcg_at_10 value: 29.059 - type: ndcg_at_100 value: 40.629 - type: ndcg_at_1000 value: 51.446000000000005 - type: ndcg_at_3 value: 36.254999999999995 - type: ndcg_at_5 value: 32.216 - type: precision_at_1 value: 42.857 - type: precision_at_10 value: 23.469 - type: precision_at_100 value: 8.041 - type: precision_at_1000 value: 1.551 - type: precision_at_3 value: 36.735 - type: precision_at_5 value: 30.203999999999997 - type: recall_at_1 value: 3.3009999999999997 - type: recall_at_10 value: 17.267 - type: recall_at_100 value: 49.36 - type: recall_at_1000 value: 83.673 - type: recall_at_3 value: 8.049000000000001 - type: recall_at_5 value: 11.379999999999999 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 88.7576 - type: ap value: 35.52110634325751 - type: f1 value: 74.14476947482417 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 73.52009054895304 - type: f1 value: 73.81407409876577 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 54.35358706465052 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.65619598259522 - type: cos_sim_ap value: 65.824087818991 - type: cos_sim_f1 value: 61.952620244077536 - type: cos_sim_precision value: 56.676882661996494 - type: cos_sim_recall value: 68.311345646438 - type: dot_accuracy value: 83.65619598259522 - type: dot_ap value: 65.82406256999921 - type: dot_f1 value: 61.952620244077536 - type: dot_precision value: 56.676882661996494 - type: dot_recall value: 68.311345646438 - type: euclidean_accuracy value: 83.65619598259522 - type: euclidean_ap value: 65.82409143427542 - type: euclidean_f1 value: 61.952620244077536 - type: euclidean_precision value: 56.676882661996494 - type: euclidean_recall value: 68.311345646438 - type: manhattan_accuracy value: 83.4296954163438 - type: manhattan_ap value: 65.20662449614932 - type: manhattan_f1 value: 61.352885525070946 - type: manhattan_precision value: 55.59365623660523 - type: manhattan_recall value: 68.44327176781002 - type: max_accuracy value: 83.65619598259522 - type: max_ap value: 65.82409143427542 - type: max_f1 value: 61.952620244077536 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.90119144642372 - type: cos_sim_ap value: 84.04753852793387 - type: cos_sim_f1 value: 76.27737226277372 - type: cos_sim_precision value: 73.86757068667052 - type: cos_sim_recall value: 78.84970742223591 - type: dot_accuracy value: 87.90119144642372 - type: dot_ap value: 84.04753668117337 - type: dot_f1 value: 76.27737226277372 - type: dot_precision value: 73.86757068667052 - type: dot_recall value: 78.84970742223591 - type: euclidean_accuracy value: 87.90119144642372 - type: euclidean_ap value: 84.04754553468206 - type: euclidean_f1 value: 76.27737226277372 - type: euclidean_precision value: 73.86757068667052 - type: euclidean_recall value: 78.84970742223591 - type: manhattan_accuracy value: 87.87014398261343 - type: manhattan_ap value: 84.05164646221583 - type: manhattan_f1 value: 76.31392706820128 - type: manhattan_precision value: 73.91586694566708 - type: manhattan_recall value: 78.87280566676932 - type: max_accuracy value: 87.90119144642372 - type: max_ap value: 84.05164646221583 - type: max_f1 value: 76.31392706820128 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: map_at_1 value: 63.6 - type: map_at_10 value: 72.673 - type: map_at_100 value: 73.05199999999999 - type: map_at_1000 value: 73.057 - type: map_at_3 value: 70.833 - type: map_at_5 value: 72.05799999999999 - type: mrr_at_1 value: 63.6 - type: mrr_at_10 value: 72.673 - type: mrr_at_100 value: 73.05199999999999 - type: mrr_at_1000 value: 73.057 - type: mrr_at_3 value: 70.833 - type: mrr_at_5 value: 72.05799999999999 - type: ndcg_at_1 value: 63.6 - type: ndcg_at_10 value: 76.776 - type: ndcg_at_100 value: 78.52900000000001 - type: ndcg_at_1000 value: 78.696 - type: ndcg_at_3 value: 73.093 - type: ndcg_at_5 value: 75.288 - type: precision_at_1 value: 63.6 - type: precision_at_10 value: 8.95 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 26.533 - type: precision_at_5 value: 16.98 - type: recall_at_1 value: 63.6 - type: recall_at_10 value: 89.5 - type: recall_at_100 value: 97.5 - type: recall_at_1000 value: 98.9 - type: recall_at_3 value: 79.60000000000001 - type: recall_at_5 value: 84.89999999999999 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 89.39999999999999 - type: ap value: 75.52087544076016 - type: f1 value: 87.7629629899278 ---
GME: General Multimodal Embedding
## GME-Qwen2-VL-2B We are excited to present `GME-Qwen2VL` series of unified **multimodal embedding models**, which are based on the advanced [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) multimodal large language models (MLLMs). The `GME` models support three types of input: **text**, **image**, and **image-text pair**, all of which can produce universal vector representations and have powerful retrieval performance. **Key Enhancements of GME Models**: - **Unified Multimodal Representation**: GME models can process both single-modal and combined-modal inputs, resulting in a unified vector representation. This enables versatile retrieval scenarios (Any2Any Search), supporting tasks such as text retrieval, image retrieval from text, and image-to-image searches. - **High Performance**: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (**UMRB**) and demonstrate strong evaluation scores in the Multimodal Textual Evaluation Benchmark (**MTEB**). - **Dynamic Image Resolution**: Benefiting from `Qwen2-VL` and our training data, GME models support dynamic resolution image input. - **Strong Visual Retrieval Performance**: Enhanced by the Qwen2-VL model series, our models excel in visual document retrieval tasks that require a nuanced understanding of document screenshots. This capability is particularly beneficial for complex document understanding scenarios, such as multimodal retrieval-augmented generation (RAG) applications focused on academic papers. **Developed by**: Tongyi Lab, Alibaba Group **Paper**: [GME: Improving Universal Multimodal Retrieval by Multimodal LLMs](http://arxiv.org/abs/2412.16855) ## Model List | Models | Model Size | Max Seq. Length | Dimension | MTEB-en| MTEB-zh | UMRB | |:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: | |[`gme-Qwen2-VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | 65.27 | 66.92 | 64.45 | |[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 69.73 | 67.44 | ## Usage **Use with custom code** ```python # You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2VL-2B/blob/main/scripts/gme_inference.py from gme_inference import GmeQwen2VL texts = [ "What kind of car is this?", "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023." ] images = [ 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg', 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg', ] gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct") # Single-modal embedding e_text = gme.get_text_embeddings(texts=texts) e_image = gme.get_image_embeddings(images=images) print((e_text * e_image).sum(-1)) ## tensor([0.2281, 0.6001], dtype=torch.float16) # How to set embedding instruction e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.') # If is_query=False, we always use the default instruction. e_corpus = gme.get_image_embeddings(images=images, is_query=False) print((e_query * e_corpus).sum(-1)) ## tensor([0.2433, 0.7051], dtype=torch.float16) # Fused-modal embedding e_fused = gme.get_fused_embeddings(texts=texts, images=images) print((e_fused[0] * e_fused[1]).sum()) ## tensor(0.6108, dtype=torch.float16) ``` ## Evaluation We validated the performance on our universal multimodal retrieval benchmark (**UMRB**) among others. | | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. | |--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:| | | | T→T (16) | I→I (1) | T→I (4) | T→VD (10) | I→T (4) | T→IT (2) | IT→T (5) | IT→I (2) | IT→IT (3) | (47) | | VISTA | 0.2B | 55.15 | **31.98** | 32.88 | 10.12 | 31.23 | 45.81 | 53.32 | 8.97 | 26.26 | 37.32 | | CLIP-SF | 0.4B | 39.75 | 31.42 | 59.05 | 24.09 | 62.95 | 66.41 | 53.32 | 34.9 | 55.65 | 43.66 | | One-Peace | 4B | 43.54 | 31.27 | 61.38 | 42.9 | 65.59 | 42.72 | 28.29 | 6.73 | 23.41 | 42.01 | | DSE | 4.2B | 48.94 | 27.92 | 40.75 | 78.21 | 52.54 | 49.62 | 35.44 | 8.36 | 40.18 | 50.04 | | E5-V | 8.4B | 52.41 | 27.36 | 46.56 | 41.22 | 47.95 | 54.13 | 32.9 | 23.17 | 7.23 | 42.52 | | **[GME-Qwen2-VL-2B](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct)** | 2.2B | 55.93 | 29.86 | 57.36 | 87.84 | 61.93 | 76.47 | 64.58 | 37.02 | 66.47 | 64.45 | | **[GME-Qwen2-VL-7B](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct)** | 8.3B | **58.19** | 31.89 | **61.35** | **89.92** | **65.83** | **80.94** | **66.18** | **42.56** | **73.62** | **67.44** | The [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) English tab shows the text embeddings performence of our model. **More detailed experimental results can be found in the [paper](http://arxiv.org/abs/2412.16855)**. ## Limitations - **Single Image Input**: In `Qwen2-VL`, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency. Due to the lack of relevant data, our models and evaluations retain one single image. - **English-only Training**: Our models are trained on english data only. Although the `Qwen2-VL` models are multilingual, the multilingual-multimodal embedding performance are not guaranteed. We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version. ## Redistribution and Use We encourage and value diverse applications of GME models and continuous enhancements to the models themselves. - If you distribute or make GME models (or any derivative works) available, or if you create a product or service (including another AI model) that incorporates them, you must prominently display `Built with GME` on your website, user interface, blog post, About page, or product documentation. - If you utilize GME models or their outputs to develop, train, fine-tune, or improve an AI model that is distributed or made available, you must prefix the name of any such AI model with `GME`. ## Cloud API Services In addition to the open-source [GME](https://huggingface.co/collections/Alibaba-NLP/gme-models-67667e092da3491f630964d6) series models, GME series models are also available as commercial API services on Alibaba Cloud. - [MultiModal Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/multimodal-embedding-api-reference?spm=a2c4g.11186623.0.0.321c1d1cqmoJ5C): The `multimodal-embedding-v1` model service is available. Note that the models behind the commercial APIs are not entirely identical to the open-source models. ## Hiring We have open positions for Research Interns and Full-Time Researchers to join our team at Tongyi Lab. We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems. Our team is located in the vibrant cities of Beijing and Hangzhou, offering a collaborative and dynamic work environment where you can contribute to cutting-edge advancements in artificial intelligence and machine learning. If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to dingkun.ldk@alibaba-inc.com. ## Citation If you find our paper or models helpful, please consider cite: ``` @misc{zhang2024gme, title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs}, author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min}, year={2024}, eprint={2412.16855}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={http://arxiv.org/abs/2412.16855}, } ```