# Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py import os from typing import Collection, List, Optional, Dict, Set, Tuple, Union from functools import cached_property import base64 from transformers import PreTrainedTokenizer, AddedToken, AutoConfig from transformers.models.auto.tokenization_auto import get_tokenizer_config import tiktoken """ This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base") with a few additional special tokens to support the ChatML format. TODO(bapatra): Right now, I do not save the special tokens to the vocab file. Maybe in the future, that would be useful? Can add that support later. """ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]: with open(tiktoken_bpe_file, "rb") as f: contents = f.read() return { base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line) } # On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast. # this in turn causes some indices to be empty. We account for these empty indices by adding # dummy tokens to the tokenizer. EFFECTIVE_PADDED_VOCAB_SIZE = 100352 ACTUAL_VOCAB_SIZE = 100276 DUMMY_TOKENS = { f"<|dummy_id_{11 + offset}|>": 100276 + offset for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE) } SPECIAL_TOKENS = { # tiktoken.get_encoding("cl100k_base")._special_tokens '<|endoftext|>': 100257, '<|fim_prefix|>': 100258, '<|fim_middle|>': 100259, '<|fim_suffix|>': 100260, # Special tokens for post-training "<|system|>": 100261, "<|user|>": 100262, "<|assistant|>": 100263, # Dummy unused tokens "<|dummy_id_0|>": 100264, "<|dummy_id_1|>": 100265, # Special tokens for post-training continued "<|end|>": 100266, # Some dummy tokens, so that tokenization is contiguous and does not cause issues # Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not # actually map to anything. So we use a dummy token here. "<|dummy_id_2|>": 100256, # Likewise, tokens from 100267 to 100275 are also unused "<|dummy_id_3|>": 100267, "<|dummy_id_4|>": 100268, "<|dummy_id_5|>": 100269, "<|dummy_id_6|>": 100270, "<|dummy_id_7|>": 100271, "<|dummy_id_8|>": 100272, "<|dummy_id_9|>": 100273, "<|dummy_id_10|>": 100274, "<|dummy_id_11|>": 100275, # The final end of prompt token # (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens) '<|endofprompt|>': 100276, # Dummy tokens to account for padding of the tokenizer # We pad to ensure tensor cores are used for vocab multiplication **DUMMY_TOKENS } class Phi3SmallTokenizer(PreTrainedTokenizer): vocab_files_names = { "vocab_file": "cl100k_base.tiktoken" } model_input_names: List[str] = ["input_ids", "attention_mask"] padding_side = "left" def __init__( self, vocab_file: Optional[str] = None, errors: str = "replace", **kwargs ) -> None: # PreTrainedTokenizer's init calls _add_tokens, which in turn checks # if the token is present in `self.special_tokens``. Hence instantiating it here. # The way Qwen gets around this is by checking against SPECIAL_TOKENS # But I think it's better to check against the objects own `special_tokens` # in case we eventually want to allow the tokenizer to have special tokens. self.special_tokens = SPECIAL_TOKENS super().__init__(**kwargs) self.errors = errors base = tiktoken.get_encoding("cl100k_base") if vocab_file is None: self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks else: self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) self.pat_str = base._pat_str enc = tiktoken.Encoding( name="phi3small", pat_str=self.pat_str, mergeable_ranks=self.mergeable_ranks, special_tokens=self.special_tokens, ) self.tokenizer = enc self.decoder: Dict[int, bytes] = { v: k for k, v in self.mergeable_ranks.items() } self.decoder.update({v: k for k, v in self.special_tokens.items()}) self.eod_id = self.tokenizer.eot_token self._eos_token = self._convert_id_to_token(self.eod_id) # Setting the bos_token to be the same as the eos_token # Note that this is **not** the correct thing to do, and is done # just so that some of the downstream libraries do not break. self._bos_token = self._eos_token # Assign the special tokens to class variables self.system_id = self.special_tokens["<|system|>"] self.user_id = self.special_tokens["<|user|>"] self.assistant_id = self.special_tokens["<|assistant|>"] self.end_id = self.special_tokens["<|end|>"] @cached_property def dummy_token_indices(self) -> List[int]: # There are some additional special tokens in the cl100k_base tokenizer # that we do not use. Hence, we also consider them to be dummy tokens. additional_tokens = [ "<|fim_prefix|>", "<|fim_middle|>", "<|fim_suffix|>", "<|endofprompt|>" ] dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token] dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens]) return sorted(dummy_token_indices) def __getstate__(self): state = self.__dict__.copy() del state["tokenizer"] return state def __setstate__(self, state): self.__dict__ = state enc = tiktoken.Encoding( name="cl100k_im", pat_str=self.pat_str, mergeable_ranks=self.mergeable_ranks, special_tokens=self.special_tokens, ) self.tokenizer = enc def __len__(self): return self.tokenizer.n_vocab @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs, ): cls_kwargs = kwargs # First try to load from the tokenization config if it exists tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) if tokenization_config: cls_kwargs = { **tokenization_config, **cls_kwargs } else: config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True) cls_kwargs["model_max_length"] = config.max_position_embeddings return cls(**cls_kwargs) def get_vocab(self) -> Dict[Union[str, bytes], int]: return {**self.mergeable_ranks, **self.special_tokens} def convert_tokens_to_ids( self, tokens: Union[bytes, str, List[Union[bytes, str]]] ) -> Union[int, List[int]]: ids = [] if isinstance(tokens, (str, bytes)): if tokens in self.special_tokens: return self.special_tokens[tokens] else: return self.mergeable_ranks.get(tokens) ids: List[int] = [] for token in tokens: ids.append(self.convert_tokens_to_ids(token)) return ids def _add_tokens( self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False, ) -> int: if not special_tokens and new_tokens: raise ValueError("Only special tokens can be added to this tokenizer") for token in new_tokens: surface_form = token.content if isinstance(token, AddedToken) else token if surface_form not in self.special_tokens: raise ValueError( "For now, we do not support unknown special tokens\n" "In the future, if there is a need for this, we can add special tokens to the tokenizer\n" "starting from rank 100261 - 100263 and then 100266 - 100275.\n" "And finally, we can re-construct the enc object back\n" ) return 0 def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]: file_path = os.path.join(save_directory, "cl100k_base.tiktoken") with open(file_path, "w") as f: for token, rank in self.mergeable_ranks.items(): line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n" f.write(line) return (file_path,) def tokenize( self, text: str, allowed_special: Union[Set, str] = "all", disallowed_special: Union[Collection, str] = (), **kwargs ) -> List[Union[bytes, str]]: tokens: List[Union[bytes, str]] = [] for token_id in self.tokenizer.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special ): tokens.append(self.decoder[token_id]) return tokens def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str: """ Converts a sequence of tokens in a single string. """ text = "" temp = b"" for t in tokens: if isinstance(t, str): if temp: text += temp.decode("utf-8", errors=self.errors) temp = b"" text += t elif isinstance(t, bytes): temp += t else: raise TypeError("token should only be of type types or str") if temp: text += temp.decode("utf-8", errors=self.errors) return text @property def vocab_size(self): return self.tokenizer.n_vocab @property def eos_token_id(self) -> int: return self.eod_id def _convert_id_to_token(self, index: int) -> Union[bytes, str]: """Converts an id to a token, special tokens included""" if index in self.decoder: return self.decoder[index] raise ValueError("unknown ids") def _convert_token_to_id(self, token: Union[bytes, str]) -> int: """Converts a token to an id using the vocab, special tokens included""" if token in self.special_tokens: return self.special_tokens[token] if token in self.mergeable_ranks: return self.mergeable_ranks[token] raise ValueError("unknown token") def _tokenize(self, text: str, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Do NOT take care of added tokens. """ raise NotImplementedError def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, errors: str = None, **kwargs, ) -> str: if isinstance(token_ids, int): token_ids = [token_ids] if skip_special_tokens: token_ids = [i for i in token_ids if i < self.eod_id] return self.tokenizer.decode(token_ids, errors=errors or self.errors)