--- library_name: peft license: mit language: - en tags: - transformers - biology - esm - esm2 - protein - protein language model --- # ESM-2 RNA Binding Site LoRA This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation ([LoRA](https://huggingface.co/docs/peft/task_guides/token-classification-lora)) of the [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) model for the (binary) token classification task of predicting RNA binding sites of proteins. The Github with the training script and conda env YAML can be [found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). You can also find a version of this model that was fine-tuned without LoRA [here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor). ## Training procedure This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`, trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites) using a `75/25` train/test split. It achieves an evaluation loss of `0.18801096081733704`. ### Framework versions - PEFT 0.4.0 ## Using the Model To use, try running: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t12_35M_LoRA_RNA_binding" # ESM2 base model base_model_path = "facebook/esm2_t12_35M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No binding site", 1: "Binding site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['', '', '']: print((token, id2label[prediction])) ```