--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-phishing-classifier_teacher results: [] --- # bert-phishing-classifier_teacher This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2941 - Accuracy: 0.873 - Auc: 0.952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 0.4992 | 1.0 | 263 | 0.3864 | 0.807 | 0.914 | | 0.4029 | 2.0 | 526 | 0.3635 | 0.838 | 0.934 | | 0.3699 | 3.0 | 789 | 0.4964 | 0.78 | 0.942 | | 0.3364 | 4.0 | 1052 | 0.3216 | 0.858 | 0.938 | | 0.3626 | 5.0 | 1315 | 0.3473 | 0.858 | 0.948 | | 0.3189 | 6.0 | 1578 | 0.2932 | 0.88 | 0.95 | | 0.3217 | 7.0 | 1841 | 0.2930 | 0.876 | 0.949 | | 0.3355 | 8.0 | 2104 | 0.3004 | 0.864 | 0.95 | | 0.3103 | 9.0 | 2367 | 0.2891 | 0.867 | 0.951 | | 0.2987 | 10.0 | 2630 | 0.2941 | 0.873 | 0.952 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.3.0+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0