--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - ArtFair/diarizers_dataset_70-15-15 model-index: - name: fine_tuned_segmentation-3.0_1e-3_128_pth results: [] --- # fine_tuned_segmentation-3.0_1e-3_128_pth This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the ArtFair/diarizers_dataset_70-15-15 default dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Der: 0.2625 - False Alarm: 0.1458 - Missed Detection: 0.0926 - Confusion: 0.0241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.426 | 1.0 | 233 | 0.3954 | 0.2915 | 0.1834 | 0.0807 | 0.0274 | | 0.3974 | 2.0 | 466 | 0.3667 | 0.2668 | 0.1391 | 0.1032 | 0.0246 | | 0.3772 | 3.0 | 699 | 0.3675 | 0.2672 | 0.1552 | 0.0874 | 0.0246 | | 0.3618 | 4.0 | 932 | 0.3629 | 0.2641 | 0.1498 | 0.0899 | 0.0243 | | 0.3622 | 5.0 | 1165 | 0.3620 | 0.2625 | 0.1458 | 0.0926 | 0.0241 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.4.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2