--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-Custom_Dataset_Finetune results: [] pipeline_tag: video-classification --- # videomae-base-finetuned-Custom_Dataset_Finetune This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an Cricket Shots dataset. It achieves the following results on the evaluation set: - Loss: 0.8060 - Accuracy: 0.7586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.9284 | 0.252 | 63 | 0.9844 | 0.5152 | | 0.9402 | 1.252 | 126 | 0.9521 | 0.6818 | | 0.8639 | 2.252 | 189 | 0.7931 | 0.6061 | | 0.6195 | 3.2440 | 250 | 0.9109 | 0.6364 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1