--- license: mit base_model: dslim/bert-base-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Products_NER8 results: [] --- # Products_NER8 This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2028 - Precision: 0.9227 - Recall: 0.9267 - F1: 0.9247 - Accuracy: 0.9446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1326 | 1.0 | 1235 | 0.1052 | 0.8887 | 0.9121 | 0.9003 | 0.9386 | | 0.0959 | 2.0 | 2470 | 0.0927 | 0.8742 | 0.9085 | 0.8910 | 0.9417 | | 0.0824 | 3.0 | 3705 | 0.0931 | 0.8970 | 0.9174 | 0.9070 | 0.9433 | | 0.079 | 4.0 | 4940 | 0.0948 | 0.9067 | 0.9209 | 0.9137 | 0.9432 | | 0.0762 | 5.0 | 6175 | 0.0962 | 0.8963 | 0.9179 | 0.9070 | 0.9437 | | 0.0721 | 6.0 | 7410 | 0.1030 | 0.9095 | 0.9223 | 0.9159 | 0.9443 | | 0.0683 | 7.0 | 8645 | 0.1070 | 0.9128 | 0.9233 | 0.9181 | 0.9439 | | 0.0637 | 8.0 | 9880 | 0.1178 | 0.9157 | 0.9240 | 0.9199 | 0.9439 | | 0.059 | 9.0 | 11115 | 0.1215 | 0.9176 | 0.9248 | 0.9212 | 0.9443 | | 0.0527 | 10.0 | 12350 | 0.1367 | 0.9189 | 0.9247 | 0.9218 | 0.9438 | | 0.0475 | 11.0 | 13585 | 0.1504 | 0.9199 | 0.9250 | 0.9224 | 0.9441 | | 0.0431 | 12.0 | 14820 | 0.1484 | 0.9207 | 0.9259 | 0.9233 | 0.9446 | | 0.0389 | 13.0 | 16055 | 0.1706 | 0.9224 | 0.9267 | 0.9246 | 0.9446 | | 0.0368 | 14.0 | 17290 | 0.1847 | 0.9223 | 0.9265 | 0.9244 | 0.9445 | | 0.0351 | 15.0 | 18525 | 0.2028 | 0.9227 | 0.9267 | 0.9247 | 0.9446 | ### Framework versions - Transformers 4.33.0 - Pytorch 1.13.1+cu117 - Datasets 2.1.0 - Tokenizers 0.13.3