--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE-ALT results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6521739130434783 --- # swiftformer-xs-DMAE-ALT This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 6162013035452755345408.0000 - Accuracy: 0.6522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:---------------------------:|:-----:|:----:|:---------------------------:|:--------:| | No log | 0.86 | 3 | 6162013035452755345408.0000 | 0.4348 | | No log | 2.0 | 7 | 6162013035452755345408.0000 | 0.5217 | | 6041083954518472785920.0000 | 2.86 | 10 | 6162013035452755345408.0000 | 0.6304 | | 6041083954518472785920.0000 | 4.0 | 14 | 6162013035452755345408.0000 | 0.6304 | | 6041083954518472785920.0000 | 4.86 | 17 | 6162013035452755345408.0000 | 0.6087 | | 6324536912185469698048.0000 | 6.0 | 21 | 6162013035452755345408.0000 | 0.6087 | | 6324536912185469698048.0000 | 6.86 | 24 | 6162013035452755345408.0000 | 0.5870 | | 6324536912185469698048.0000 | 8.0 | 28 | 6162013035452755345408.0000 | 0.5870 | | 7104031645049785679872.0000 | 8.86 | 31 | 6162013035452755345408.0000 | 0.6304 | | 7104031645049785679872.0000 | 10.0 | 35 | 6162013035452755345408.0000 | 0.6304 | | 7104031645049785679872.0000 | 10.86 | 38 | 6162013035452755345408.0000 | 0.6304 | | 5243873411799968645120.0000 | 12.0 | 42 | 6162013035452755345408.0000 | 0.6087 | | 5243873411799968645120.0000 | 12.86 | 45 | 6162013035452755345408.0000 | 0.6087 | | 5243873411799968645120.0000 | 14.0 | 49 | 6162013035452755345408.0000 | 0.6304 | | 6838294497236975878144.0000 | 14.86 | 52 | 6162013035452755345408.0000 | 0.6304 | | 6838294497236975878144.0000 | 16.0 | 56 | 6162013035452755345408.0000 | 0.6304 | | 6838294497236975878144.0000 | 16.86 | 59 | 6162013035452755345408.0000 | 0.6304 | | 6448545779724929990656.0000 | 18.0 | 63 | 6162013035452755345408.0000 | 0.6304 | | 6448545779724929990656.0000 | 18.86 | 66 | 6162013035452755345408.0000 | 0.6304 | | 6058800665092585160704.0000 | 20.0 | 70 | 6162013035452755345408.0000 | 0.6304 | | 6058800665092585160704.0000 | 20.86 | 73 | 6162013035452755345408.0000 | 0.6304 | | 6058800665092585160704.0000 | 22.0 | 77 | 6162013035452755345408.0000 | 0.6304 | | 5846209595762449317888.0000 | 22.86 | 80 | 6162013035452755345408.0000 | 0.6304 | | 5846209595762449317888.0000 | 24.0 | 84 | 6162013035452755345408.0000 | 0.6304 | | 5846209595762449317888.0000 | 24.86 | 87 | 6162013035452755345408.0000 | 0.6522 | | 5846210496482374582272.0000 | 26.0 | 91 | 6162013035452755345408.0000 | 0.6304 | | 5846210496482374582272.0000 | 26.86 | 94 | 6162013035452755345408.0000 | 0.6304 | | 5846210496482374582272.0000 | 28.0 | 98 | 6162013035452755345408.0000 | 0.6522 | | 6625704778986728456192.0000 | 28.86 | 101 | 6162013035452755345408.0000 | 0.6304 | | 6625704778986728456192.0000 | 30.0 | 105 | 6162013035452755345408.0000 | 0.6304 | | 6625704778986728456192.0000 | 30.86 | 108 | 6162013035452755345408.0000 | 0.6522 | | 5952505355607498293248.0000 | 32.0 | 112 | 6162013035452755345408.0000 | 0.6304 | | 5952505355607498293248.0000 | 32.86 | 115 | 6162013035452755345408.0000 | 0.6304 | | 5952505355607498293248.0000 | 34.0 | 119 | 6162013035452755345408.0000 | 0.6304 | | 6041083504158509629440.0000 | 34.29 | 120 | 6162013035452755345408.0000 | 0.6304 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0