--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7391304347826086 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8596 - Accuracy: 0.7391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0015 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.3836 | 0.4565 | | No log | 2.0 | 7 | 1.3327 | 0.6522 | | 1.3567 | 2.86 | 10 | 1.1681 | 0.6522 | | 1.3567 | 4.0 | 14 | 1.0440 | 0.5652 | | 1.3567 | 4.86 | 17 | 1.0462 | 0.6304 | | 1.0903 | 6.0 | 21 | 0.9294 | 0.5870 | | 1.0903 | 6.86 | 24 | 0.9572 | 0.6522 | | 1.0903 | 8.0 | 28 | 0.9286 | 0.6739 | | 1.0969 | 8.86 | 31 | 0.9229 | 0.6304 | | 1.0969 | 10.0 | 35 | 0.9061 | 0.6522 | | 1.0969 | 10.86 | 38 | 0.8341 | 0.6739 | | 0.8923 | 12.0 | 42 | 0.8786 | 0.6739 | | 0.8923 | 12.86 | 45 | 0.8596 | 0.7391 | | 0.8923 | 14.0 | 49 | 0.8902 | 0.7174 | | 0.7289 | 14.86 | 52 | 0.8024 | 0.6739 | | 0.7289 | 16.0 | 56 | 0.9341 | 0.7174 | | 0.7289 | 16.86 | 59 | 1.0464 | 0.7174 | | 0.6609 | 18.0 | 63 | 0.9923 | 0.6087 | | 0.6609 | 18.86 | 66 | 0.8225 | 0.7174 | | 0.6527 | 20.0 | 70 | 0.8748 | 0.6957 | | 0.6527 | 20.86 | 73 | 0.8052 | 0.6739 | | 0.6527 | 22.0 | 77 | 0.8861 | 0.6957 | | 0.493 | 22.86 | 80 | 0.9555 | 0.6957 | | 0.493 | 24.0 | 84 | 1.0336 | 0.6739 | | 0.493 | 24.86 | 87 | 0.9961 | 0.6957 | | 0.4088 | 26.0 | 91 | 1.0400 | 0.6957 | | 0.4088 | 26.86 | 94 | 1.0536 | 0.6957 | | 0.4088 | 28.0 | 98 | 1.1388 | 0.6739 | | 0.4047 | 28.86 | 101 | 1.2295 | 0.6522 | | 0.4047 | 30.0 | 105 | 1.2627 | 0.6522 | | 0.4047 | 30.86 | 108 | 1.2372 | 0.6739 | | 0.3681 | 32.0 | 112 | 1.2919 | 0.6522 | | 0.3681 | 32.86 | 115 | 1.2453 | 0.6522 | | 0.3681 | 34.0 | 119 | 1.2612 | 0.6739 | | 0.353 | 34.29 | 120 | 1.2611 | 0.6957 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0