--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.45652173913043476 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 67319515540793508675715072.0000 - Accuracy: 0.4565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.015 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------------------------:|:-----:|:----:|:-------------------------------:|:--------:| | No log | 0.86 | 3 | 67319515540793508675715072.0000 | 0.6739 | | No log | 2.0 | 7 | 67319515540793508675715072.0000 | 0.1087 | | 65998362497246039927422976.0000 | 2.86 | 10 | 67319515540793508675715072.0000 | 0.3261 | | 65998362497246039927422976.0000 | 4.0 | 14 | 67319515540793508675715072.0000 | 0.4565 | | 65998362497246039927422976.0000 | 4.86 | 17 | 67319515540793508675715072.0000 | 0.3261 | | 69095061697085437542137856.0000 | 6.0 | 21 | 67319515540793508675715072.0000 | 0.4783 | | 69095061697085437542137856.0000 | 6.86 | 24 | 67319515540793508675715072.0000 | 0.4565 | | 69095061697085437542137856.0000 | 8.0 | 28 | 67319515540793508675715072.0000 | 0.4565 | | 77610986341318196513996800.0000 | 8.86 | 31 | 67319515540793508675715072.0000 | 0.5 | | 77610986341318196513996800.0000 | 10.0 | 35 | 67319515540793508675715072.0000 | 0.3478 | | 77610986341318196513996800.0000 | 10.86 | 38 | 67319515540793508675715072.0000 | 0.3478 | | 57288905682238366283726848.0000 | 12.0 | 42 | 67319515540793508675715072.0000 | 0.3478 | | 57288905682238366283726848.0000 | 12.86 | 45 | 67319515540793508675715072.0000 | 0.4348 | | 57288905682238366283726848.0000 | 14.0 | 49 | 67319515540793508675715072.0000 | 0.3696 | | 74707823001602531749003264.0000 | 14.86 | 52 | 67319515540793508675715072.0000 | 0.3261 | | 74707823001602531749003264.0000 | 16.0 | 56 | 67319515540793508675715072.0000 | 0.2826 | | 74707823001602531749003264.0000 | 16.86 | 59 | 67319515540793508675715072.0000 | 0.4565 | | 70449886504927853738459136.0000 | 18.0 | 63 | 67319515540793508675715072.0000 | 0.4348 | | 70449886504927853738459136.0000 | 18.86 | 66 | 67319515540793508675715072.0000 | 0.4130 | | 66191905736067400542978048.0000 | 20.0 | 70 | 67319515540793508675715072.0000 | 0.3478 | | 66191905736067400542978048.0000 | 20.86 | 73 | 67319515540793508675715072.0000 | 0.4565 | | 66191905736067400542978048.0000 | 22.0 | 77 | 67319515540793508675715072.0000 | 0.3478 | | 63869401627606337277919232.0000 | 22.86 | 80 | 67319515540793508675715072.0000 | 0.4130 | | 63869401627606337277919232.0000 | 24.0 | 84 | 67319515540793508675715072.0000 | 0.3261 | | 63869401627606337277919232.0000 | 24.86 | 87 | 67319515540793508675715072.0000 | 0.5 | | 63869386870211073156317184.0000 | 26.0 | 91 | 67319515540793508675715072.0000 | 0.4783 | | 63869386870211073156317184.0000 | 26.86 | 94 | 67319515540793508675715072.0000 | 0.4565 | | 63869386870211073156317184.0000 | 28.0 | 98 | 67319515540793508675715072.0000 | 0.4565 | | 72385304135746204362342400.0000 | 28.86 | 101 | 67319515540793508675715072.0000 | 0.4565 | | 72385304135746204362342400.0000 | 30.0 | 105 | 67319515540793508675715072.0000 | 0.5 | | 72385304135746204362342400.0000 | 30.86 | 108 | 67319515540793508675715072.0000 | 0.5 | | 65030638924441609083813888.0000 | 32.0 | 112 | 67319515540793508675715072.0000 | 0.4565 | | 65030638924441609083813888.0000 | 32.86 | 115 | 67319515540793508675715072.0000 | 0.4565 | | 65030638924441609083813888.0000 | 34.0 | 119 | 67319515540793508675715072.0000 | 0.4565 | | 65998362497246039927422976.0000 | 34.29 | 120 | 67319515540793508675715072.0000 | 0.4565 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0