--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-DMAE results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.717391304347826 --- # swiftformer-xs-DMAE This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8398 - Accuracy: 0.7174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.3706 | 0.5217 | | No log | 2.0 | 7 | 1.1520 | 0.6304 | | 1.2948 | 2.86 | 10 | 1.2934 | 0.6087 | | 1.2948 | 4.0 | 14 | 1.2139 | 0.6304 | | 1.2948 | 4.86 | 17 | 2.5946 | 0.5217 | | 1.1888 | 6.0 | 21 | 1.1217 | 0.4783 | | 1.1888 | 6.86 | 24 | 1.1050 | 0.5870 | | 1.1888 | 8.0 | 28 | 1.6684 | 0.3913 | | 1.1236 | 8.86 | 31 | 0.8968 | 0.6739 | | 1.1236 | 10.0 | 35 | 1.2404 | 0.5652 | | 1.1236 | 10.86 | 38 | 0.9957 | 0.6087 | | 1.0477 | 12.0 | 42 | 1.1694 | 0.5 | | 1.0477 | 12.86 | 45 | 0.9247 | 0.6957 | | 1.0477 | 14.0 | 49 | 0.9464 | 0.6304 | | 1.0264 | 14.86 | 52 | 0.8716 | 0.6087 | | 1.0264 | 16.0 | 56 | 0.8909 | 0.6739 | | 1.0264 | 16.86 | 59 | 0.8654 | 0.6739 | | 0.909 | 18.0 | 63 | 0.9091 | 0.6087 | | 0.909 | 18.86 | 66 | 0.8398 | 0.7174 | | 0.8914 | 20.0 | 70 | 0.9393 | 0.6522 | | 0.8914 | 20.86 | 73 | 0.9567 | 0.6739 | | 0.8914 | 22.0 | 77 | 0.9479 | 0.6087 | | 0.8573 | 22.86 | 80 | 0.9308 | 0.6739 | | 0.8573 | 24.0 | 84 | 0.8986 | 0.6739 | | 0.8573 | 24.86 | 87 | 0.9345 | 0.6739 | | 0.8249 | 26.0 | 91 | 0.9843 | 0.6087 | | 0.8249 | 26.86 | 94 | 0.9945 | 0.6087 | | 0.8249 | 28.0 | 98 | 0.9493 | 0.5870 | | 0.8307 | 28.86 | 101 | 0.9074 | 0.6739 | | 0.8307 | 30.0 | 105 | 0.9497 | 0.6304 | | 0.8307 | 30.86 | 108 | 0.9572 | 0.6087 | | 0.7781 | 32.0 | 112 | 0.9732 | 0.6087 | | 0.7781 | 32.86 | 115 | 0.9418 | 0.6304 | | 0.7781 | 34.0 | 119 | 0.9533 | 0.6087 | | 0.8104 | 34.29 | 120 | 0.9481 | 0.6087 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0