--- base_model: Aviral2412/mini_model tags: - generated_from_trainer datasets: - common_voice_1_0 metrics: - wer model-index: - name: fineturning-with-pretraining-2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_1_0 type: common_voice_1_0 config: en split: validation args: en metrics: - name: Wer type: wer value: 1.0046553730764256 --- # fineturning-with-pretraining-2 This model is a fine-tuned version of [Aviral2412/mini_model](https://huggingface.co/Aviral2412/mini_model) on the common_voice_1_0 dataset. It achieves the following results on the evaluation set: - Loss: 2.6209 - Wer: 1.0047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0009 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4746 | 4.29 | 500 | 2.5056 | 1.0013 | | 2.4704 | 8.58 | 1000 | 2.4840 | 1.0013 | | 2.4346 | 12.88 | 1500 | 2.4060 | 1.0013 | | 2.3825 | 17.17 | 2000 | 2.4998 | 1.0014 | | 2.2596 | 21.46 | 2500 | 2.6122 | 1.0019 | | 2.1902 | 25.75 | 3000 | 2.6619 | 1.0027 | | 2.1675 | 30.04 | 3500 | 2.6117 | 1.0048 | | 2.143 | 34.33 | 4000 | 2.6209 | 1.0047 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2