--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding # BGE-M3 In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity. - Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval. - Multi-Linguality: It can support more than 100 working languages. - Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. **Some suggestions for retrieval pipeline in RAG:** We recommend to use following pipeline: hybrid retrieval + re-ranking. - Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities. A classic example: using both embedding retrieval and the BM25 algorithm. Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval. This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings. - As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model. Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text. ## Model Specs | Model Name | Dimension | Sequence Length | |:----:|:---:|:---:| | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 1024 | 8192 | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | ## FAQ **1. Introduction for different retrieval methods** - Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding) - Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720) - Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832). **2. How to use BGE-M3 in other projects?** For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE. The only difference is that the BGE-M3 model no longer requires adding instructions to the queries. For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model. Contributions from the community are welcome. **3. How to fine-tune bge-M3 model?** You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to fine-tune the dense embedding. Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released. ## Usage Install: ``` git clone https://github.com/FlagOpen/FlagEmbedding.git cd FlagEmbedding pip install -e . ``` or: ``` pip install -U FlagEmbedding ``` ### Generate Embedding for text - Dense Embedding ```python from FlagEmbedding import BGEM3FlagModel model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation sentences_1 = ["What is BGE M3?", "Defination of BM25"] sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"] embeddings_1 = model.encode(sentences_1)['dense_vecs'] embeddings_2 = model.encode(sentences_2)['dense_vecs'] similarity = embeddings_1 @ embeddings_2.T print(similarity) # [[0.6265, 0.3477], [0.3499, 0.678 ]] ``` You also can use sentence-transformers and huggingface transformers to generate dense embeddings. Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details. - Sparse Embedding (Lexical Weight) ```python from FlagEmbedding import BGEM3FlagModel model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation sentences_1 = ["What is BGE M3?", "Defination of BM25"] sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"] output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False) output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False) # you can see the weight for each token: print(model.convert_id_to_token(output_1['lexical_weights'])) # [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092}, # {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}] # compute the scores via lexical mathcing lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0]) print(lexical_scores) # 0.19554901123046875 print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1])) # 0.0 ``` - Multi-Vector (ColBERT) ```python from FlagEmbedding import BGEM3FlagModel model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) sentences_1 = ["What is BGE M3?", "Defination of BM25"] sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"] output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True) output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True) print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0])) print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1])) # 0.7797 # 0.4620 ``` ### Compute score for text pairs Input a list of text pairs, you can get the scores computed by different methods. ```python from FlagEmbedding import BGEM3FlagModel model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) sentences_1 = ["What is BGE M3?", "Defination of BM25"] sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"] sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2] print(model.compute_score(sentence_pairs)) # { # 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142], # 'sparse': [0.05865478515625, 0.0026397705078125, 0.0, 0.0540771484375], # 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625], # 'sparse+dense': [0.5266395211219788, 0.2692706882953644, 0.2691181004047394, 0.563307523727417], # 'colbert+sparse+dense': [0.6366440653800964, 0.3531297743320465, 0.3487969636917114, 0.6618075370788574] # } ``` ## Evaluation - Multilingual (Miracl dataset) ![avatar](./imgs/miracl.jpg) - Cross-lingual (MKQA dataset) ![avatar](./imgs/mkqa.jpg) - Long Document Retrieval ![avatar](./imgs/long.jpg) ## Training - Self-knowledge Distillation: combining multiple outputs from different retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival) - Efficient Batching: Improve the efficiency when fine-tuning on long text. The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model. - MCLS: A simple method to improve the performance on long text without fine-tuning. If you have no enough resource to fine-tuning model with long text, the method is useful. Refer to our [report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) for more details. **The fine-tuning codes and datasets will be open-sourced in the near future.** ## Models We release two versions: - BAAI/bge-m3-unsupervised: the model after contrastive learning in a large-scale dataset - BAAI/bge-m3: the final model fine-tuned from BAAI/bge-m3-unsupervised ## Acknowledgement Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc. ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` ```