--- license: apache-2.0 base_model: BEE-spoke-data/smol_llama-220M-GQA datasets: - teknium/openhermes inference: parameters: do_sample: true renormalize_logits: true temperature: 0.25 top_p: 0.95 top_k: 50 min_new_tokens: 2 max_new_tokens: 96 repetition_penalty: 1.03 no_repeat_ngram_size: 5 epsilon_cutoff: 0.0008 widget: - text: "Below is an instruction that describes a task, paired with an input that\ \ provides further context. Write a response that appropriately completes the\ \ request. \n \n### Instruction: \n \nWrite an ode to Chipotle burritos.\ \ \n \n### Response: \n" example_title: burritos model-index: - name: smol_llama-220M-openhermes results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 25.17 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 28.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.08 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 52.01 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 15.55 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 3.11 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 2.35 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.22 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.34 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-openhermes name: Open LLM Leaderboard --- # BEE-spoke-data/smol_llama-220M-openhermes > Please note that this is an experiment, and the model has limitations because it is smol. prompt format is alpaca ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: How can I increase my meme production/output? Currently, I only create them in ancient babylonian which is time consuming. ### Inputs: ### Response: ``` It was trained on inputs so if you have inputs (like some text to ask a question about) then include it under `### Inputs:` ## Example Output on the text above ^. The inference API is set to sample with low temp so you should see (_at least slightly_) different generations each time. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/0nFP2jsBkritnryKmI8NV.png) Note that the inference API parameters used here are an initial educated guess, and may be updated over time: ```yml inference: parameters: do_sample: true renormalize_logits: true temperature: 0.25 top_p: 0.95 top_k: 50 min_new_tokens: 2 max_new_tokens: 96 repetition_penalty: 1.03 no_repeat_ngram_size: 5 epsilon_cutoff: 0.0008 ``` Feel free to experiment with the parameters using the model in Python and let us know if you have improved results with other params! ## Data Note that **this checkpoint** was fine-tuned on `teknium/openhermes`, which is generated/synthetic data by an OpenAI model. This means usage of this checkpoint should follow their terms of use: https://openai.com/policies/terms-of-use --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-openhermes) | Metric |Value| |---------------------------------|----:| |Avg. |29.34| |AI2 Reasoning Challenge (25-Shot)|25.17| |HellaSwag (10-Shot) |28.98| |MMLU (5-Shot) |26.17| |TruthfulQA (0-shot) |43.08| |Winogrande (5-shot) |52.01| |GSM8k (5-shot) | 0.61| # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-openhermes) | Metric |Value| |-------------------|----:| |Avg. | 4.76| |IFEval (0-Shot) |15.55| |BBH (3-Shot) | 3.11| |MATH Lvl 5 (4-Shot)| 0.00| |GPQA (0-shot) | 2.35| |MuSR (0-shot) | 6.22| |MMLU-PRO (5-shot) | 1.34|