---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The consolidated financial statements and accompanying notes listed
in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere
in this Annual Report on Form 10-K.
sentences:
- What is the carrying value of the indefinite-lived intangible assets related to
the Certificate of Needs and Medicare licenses as of December 31, 2023?
- What sections of the Annual Report on Form 10-K contain the company's financial
statements?
- What was the effective tax rate excluding discrete net tax benefits for the year
2022?
- source_sentence: Consumers are served through Amazon's online and physical stores
with an emphasis on selection, price, and convenience.
sentences:
- What decision did the European Commission make on July 10, 2023 regarding the
United States?
- What are the primary offerings to consumers through Amazon's online and physical
stores?
- What activities are included in the services and other revenue segment of General
Motors Company?
- source_sentence: Visa has traditionally referred to their structure of facilitating
secure, reliable, and efficient money movement among consumers, issuing and acquiring
financial institutions, and merchants as the 'four-party' model.
sentences:
- What model does Visa traditionally refer to regarding their transaction process
among consumers, financial institutions, and merchants?
- What percentage of Meta's U.S. workforce in 2023 were represented by people with
disabilities, veterans, and members of the LGBTQ+ community?
- What are the revenue sources for the Company’s Health Care Benefits Segment?
- source_sentence: 'In addition to LinkedIn’s free services, LinkedIn offers monetized
solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions, and Sales
Solutions. Talent Solutions provide insights for workforce planning and tools
to hire, nurture, and develop talent. Talent Solutions also includes Learning
Solutions, which help businesses close critical skills gaps in times where companies
are having to do more with existing talent.'
sentences:
- What were the major factors contributing to the increased expenses excluding interest
for Investor Services and Advisor Services in 2023?
- What were the pre-tax earnings of the manufacturing sector in 2023, 2022, and
2021?
- What does LinkedIn's Talent Solutions include?
- source_sentence: Management assessed the effectiveness of the company’s internal
control over financial reporting as of December 31, 2023. In making this assessment,
we used the criteria set forth by the Committee of Sponsoring Organizations of
the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).
sentences:
- What criteria did Caterpillar Inc. use to assess the effectiveness of its internal
control over financial reporting as of December 31, 2023?
- What are the primary components of U.S. sales volumes for Ford?
- What was the percentage increase in Schwab's common stock dividend in 2022?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8242857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2747619047619047
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17199999999999996
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8242857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.86
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7997414359858885
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7657346938775508
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.76928838935954
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6842857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6842857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6842857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7969055985295089
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7611088435374149
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7642426459320879
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285715
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7920320996457081
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7586683673469387
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7625179179417977
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6657142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8042857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.84
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8785714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6657142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2680952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08785714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6657142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8042857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.84
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8785714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7737169352715014
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7398701814058954
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7442100075694871
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6442857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8171428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8614285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6442857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1634285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08614285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6442857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.78
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8171428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8614285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7538341619041866
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7192709750566892
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7239357494750268
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Baljee/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
'What are the primary components of U.S. sales volumes for Ford?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6914 |
| cosine_accuracy@3 | 0.8243 |
| cosine_accuracy@5 | 0.86 |
| cosine_accuracy@10 | 0.9057 |
| cosine_precision@1 | 0.6914 |
| cosine_precision@3 | 0.2748 |
| cosine_precision@5 | 0.172 |
| cosine_precision@10 | 0.0906 |
| cosine_recall@1 | 0.6914 |
| cosine_recall@3 | 0.8243 |
| cosine_recall@5 | 0.86 |
| cosine_recall@10 | 0.9057 |
| cosine_ndcg@10 | 0.7997 |
| cosine_mrr@10 | 0.7657 |
| **cosine_map@100** | **0.7693** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6843 |
| cosine_accuracy@3 | 0.8186 |
| cosine_accuracy@5 | 0.8657 |
| cosine_accuracy@10 | 0.9086 |
| cosine_precision@1 | 0.6843 |
| cosine_precision@3 | 0.2729 |
| cosine_precision@5 | 0.1731 |
| cosine_precision@10 | 0.0909 |
| cosine_recall@1 | 0.6843 |
| cosine_recall@3 | 0.8186 |
| cosine_recall@5 | 0.8657 |
| cosine_recall@10 | 0.9086 |
| cosine_ndcg@10 | 0.7969 |
| cosine_mrr@10 | 0.7611 |
| **cosine_map@100** | **0.7642** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6857 |
| cosine_accuracy@3 | 0.8171 |
| cosine_accuracy@5 | 0.8557 |
| cosine_accuracy@10 | 0.8957 |
| cosine_precision@1 | 0.6857 |
| cosine_precision@3 | 0.2724 |
| cosine_precision@5 | 0.1711 |
| cosine_precision@10 | 0.0896 |
| cosine_recall@1 | 0.6857 |
| cosine_recall@3 | 0.8171 |
| cosine_recall@5 | 0.8557 |
| cosine_recall@10 | 0.8957 |
| cosine_ndcg@10 | 0.792 |
| cosine_mrr@10 | 0.7587 |
| **cosine_map@100** | **0.7625** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6657 |
| cosine_accuracy@3 | 0.8043 |
| cosine_accuracy@5 | 0.84 |
| cosine_accuracy@10 | 0.8786 |
| cosine_precision@1 | 0.6657 |
| cosine_precision@3 | 0.2681 |
| cosine_precision@5 | 0.168 |
| cosine_precision@10 | 0.0879 |
| cosine_recall@1 | 0.6657 |
| cosine_recall@3 | 0.8043 |
| cosine_recall@5 | 0.84 |
| cosine_recall@10 | 0.8786 |
| cosine_ndcg@10 | 0.7737 |
| cosine_mrr@10 | 0.7399 |
| **cosine_map@100** | **0.7442** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6443 |
| cosine_accuracy@3 | 0.78 |
| cosine_accuracy@5 | 0.8171 |
| cosine_accuracy@10 | 0.8614 |
| cosine_precision@1 | 0.6443 |
| cosine_precision@3 | 0.26 |
| cosine_precision@5 | 0.1634 |
| cosine_precision@10 | 0.0861 |
| cosine_recall@1 | 0.6443 |
| cosine_recall@3 | 0.78 |
| cosine_recall@5 | 0.8171 |
| cosine_recall@10 | 0.8614 |
| cosine_ndcg@10 | 0.7538 |
| cosine_mrr@10 | 0.7193 |
| **cosine_map@100** | **0.7239** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3).
| What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?
|
| In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes.
| What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?
|
| Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022.
| How much did the marketing expenses increase in the year ended December 31, 2023?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters