--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-hasta-75-fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # beit-base-patch16-224-hasta-75-fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0769 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.5149 | 0.9167 | | No log | 2.0 | 2 | 0.4041 | 0.9167 | | No log | 3.0 | 3 | 0.3602 | 0.9167 | | No log | 4.0 | 4 | 0.3914 | 0.9167 | | No log | 5.0 | 5 | 0.4230 | 0.9167 | | No log | 6.0 | 6 | 0.4505 | 0.9167 | | No log | 7.0 | 7 | 0.4577 | 0.9167 | | No log | 8.0 | 8 | 0.4562 | 0.9167 | | No log | 9.0 | 9 | 0.4353 | 0.9167 | | 0.2449 | 10.0 | 10 | 0.4424 | 0.9167 | | 0.2449 | 11.0 | 11 | 0.4563 | 0.9167 | | 0.2449 | 12.0 | 12 | 0.4720 | 0.8333 | | 0.2449 | 13.0 | 13 | 0.3685 | 0.9167 | | 0.2449 | 14.0 | 14 | 0.3112 | 0.9167 | | 0.2449 | 15.0 | 15 | 0.2517 | 0.9167 | | 0.2449 | 16.0 | 16 | 0.2199 | 0.9167 | | 0.2449 | 17.0 | 17 | 0.2582 | 0.9167 | | 0.2449 | 18.0 | 18 | 0.3222 | 0.9167 | | 0.2449 | 19.0 | 19 | 0.2529 | 0.9167 | | 0.1293 | 20.0 | 20 | 0.1724 | 0.9167 | | 0.1293 | 21.0 | 21 | 0.1393 | 0.9167 | | 0.1293 | 22.0 | 22 | 0.0965 | 0.9167 | | 0.1293 | 23.0 | 23 | 0.0769 | 1.0 | | 0.1293 | 24.0 | 24 | 0.0690 | 1.0 | | 0.1293 | 25.0 | 25 | 0.1172 | 0.9167 | | 0.1293 | 26.0 | 26 | 0.1629 | 0.9167 | | 0.1293 | 27.0 | 27 | 0.1103 | 0.9167 | | 0.1293 | 28.0 | 28 | 0.1193 | 1.0 | | 0.1293 | 29.0 | 29 | 0.1003 | 1.0 | | 0.0785 | 30.0 | 30 | 0.0719 | 1.0 | | 0.0785 | 31.0 | 31 | 0.1636 | 0.9167 | | 0.0785 | 32.0 | 32 | 0.2265 | 0.9167 | | 0.0785 | 33.0 | 33 | 0.2009 | 0.9167 | | 0.0785 | 34.0 | 34 | 0.1122 | 0.9167 | | 0.0785 | 35.0 | 35 | 0.0424 | 1.0 | | 0.0785 | 36.0 | 36 | 0.0407 | 1.0 | | 0.0785 | 37.0 | 37 | 0.0322 | 1.0 | | 0.0785 | 38.0 | 38 | 0.0397 | 1.0 | | 0.0785 | 39.0 | 39 | 0.0569 | 1.0 | | 0.0519 | 40.0 | 40 | 0.0891 | 0.9167 | | 0.0519 | 41.0 | 41 | 0.0974 | 0.9167 | | 0.0519 | 42.0 | 42 | 0.0969 | 0.9167 | | 0.0519 | 43.0 | 43 | 0.1268 | 0.9167 | | 0.0519 | 44.0 | 44 | 0.1718 | 0.9167 | | 0.0519 | 45.0 | 45 | 0.2412 | 0.9167 | | 0.0519 | 46.0 | 46 | 0.2935 | 0.9167 | | 0.0519 | 47.0 | 47 | 0.3791 | 0.9167 | | 0.0519 | 48.0 | 48 | 0.4504 | 0.9167 | | 0.0519 | 49.0 | 49 | 0.4738 | 0.9167 | | 0.0542 | 50.0 | 50 | 0.4470 | 0.9167 | | 0.0542 | 51.0 | 51 | 0.3819 | 0.9167 | | 0.0542 | 52.0 | 52 | 0.3327 | 0.9167 | | 0.0542 | 53.0 | 53 | 0.2756 | 0.9167 | | 0.0542 | 54.0 | 54 | 0.2012 | 0.9167 | | 0.0542 | 55.0 | 55 | 0.1548 | 0.9167 | | 0.0542 | 56.0 | 56 | 0.1668 | 0.9167 | | 0.0542 | 57.0 | 57 | 0.2124 | 0.9167 | | 0.0542 | 58.0 | 58 | 0.2389 | 0.9167 | | 0.0542 | 59.0 | 59 | 0.2337 | 0.9167 | | 0.0223 | 60.0 | 60 | 0.2025 | 0.9167 | | 0.0223 | 61.0 | 61 | 0.1676 | 0.9167 | | 0.0223 | 62.0 | 62 | 0.1085 | 0.9167 | | 0.0223 | 63.0 | 63 | 0.0652 | 0.9167 | | 0.0223 | 64.0 | 64 | 0.0644 | 0.9167 | | 0.0223 | 65.0 | 65 | 0.0544 | 1.0 | | 0.0223 | 66.0 | 66 | 0.0577 | 1.0 | | 0.0223 | 67.0 | 67 | 0.0799 | 0.9167 | | 0.0223 | 68.0 | 68 | 0.1005 | 0.9167 | | 0.0223 | 69.0 | 69 | 0.1069 | 0.9167 | | 0.0255 | 70.0 | 70 | 0.1410 | 0.9167 | | 0.0255 | 71.0 | 71 | 0.1748 | 0.9167 | | 0.0255 | 72.0 | 72 | 0.2266 | 0.9167 | | 0.0255 | 73.0 | 73 | 0.2680 | 0.9167 | | 0.0255 | 74.0 | 74 | 0.2917 | 0.9167 | | 0.0255 | 75.0 | 75 | 0.3008 | 0.9167 | | 0.0255 | 76.0 | 76 | 0.2897 | 0.9167 | | 0.0255 | 77.0 | 77 | 0.2652 | 0.9167 | | 0.0255 | 78.0 | 78 | 0.2542 | 0.9167 | | 0.0255 | 79.0 | 79 | 0.2405 | 0.9167 | | 0.0252 | 80.0 | 80 | 0.2391 | 0.9167 | | 0.0252 | 81.0 | 81 | 0.2155 | 0.9167 | | 0.0252 | 82.0 | 82 | 0.1953 | 0.9167 | | 0.0252 | 83.0 | 83 | 0.1830 | 0.9167 | | 0.0252 | 84.0 | 84 | 0.1672 | 0.9167 | | 0.0252 | 85.0 | 85 | 0.1694 | 0.9167 | | 0.0252 | 86.0 | 86 | 0.1743 | 0.9167 | | 0.0252 | 87.0 | 87 | 0.1845 | 0.9167 | | 0.0252 | 88.0 | 88 | 0.2098 | 0.9167 | | 0.0252 | 89.0 | 89 | 0.2427 | 0.9167 | | 0.0256 | 90.0 | 90 | 0.2682 | 0.9167 | | 0.0256 | 91.0 | 91 | 0.2838 | 0.9167 | | 0.0256 | 92.0 | 92 | 0.2936 | 0.9167 | | 0.0256 | 93.0 | 93 | 0.3037 | 0.9167 | | 0.0256 | 94.0 | 94 | 0.3065 | 0.9167 | | 0.0256 | 95.0 | 95 | 0.3058 | 0.9167 | | 0.0256 | 96.0 | 96 | 0.2997 | 0.9167 | | 0.0256 | 97.0 | 97 | 0.2920 | 0.9167 | | 0.0256 | 98.0 | 98 | 0.2849 | 0.9167 | | 0.0256 | 99.0 | 99 | 0.2810 | 0.9167 | | 0.0279 | 100.0 | 100 | 0.2798 | 0.9167 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1