--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-base-distilled-patch16-224-55-fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8227848101265823 --- # deit-base-distilled-patch16-224-55-fold3 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4529 - Accuracy: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8571 | 3 | 0.8367 | 0.4051 | | No log | 2.0 | 7 | 0.7223 | 0.4557 | | 0.7025 | 2.8571 | 10 | 0.7199 | 0.4684 | | 0.7025 | 4.0 | 14 | 0.6096 | 0.7089 | | 0.7025 | 4.8571 | 17 | 0.6278 | 0.5823 | | 0.6356 | 6.0 | 21 | 0.5629 | 0.7089 | | 0.6356 | 6.8571 | 24 | 0.5924 | 0.6835 | | 0.6356 | 8.0 | 28 | 0.5365 | 0.7722 | | 0.5493 | 8.8571 | 31 | 0.6082 | 0.6329 | | 0.5493 | 10.0 | 35 | 0.7239 | 0.5949 | | 0.5493 | 10.8571 | 38 | 0.5435 | 0.7722 | | 0.5205 | 12.0 | 42 | 0.8530 | 0.5570 | | 0.5205 | 12.8571 | 45 | 0.5530 | 0.6709 | | 0.5205 | 14.0 | 49 | 0.4728 | 0.7722 | | 0.4979 | 14.8571 | 52 | 0.9571 | 0.5570 | | 0.4979 | 16.0 | 56 | 0.5193 | 0.7722 | | 0.4979 | 16.8571 | 59 | 0.4529 | 0.8228 | | 0.4957 | 18.0 | 63 | 0.4686 | 0.7975 | | 0.4957 | 18.8571 | 66 | 0.5060 | 0.7722 | | 0.3659 | 20.0 | 70 | 0.4821 | 0.7848 | | 0.3659 | 20.8571 | 73 | 0.6116 | 0.7089 | | 0.3659 | 22.0 | 77 | 0.5860 | 0.7215 | | 0.2973 | 22.8571 | 80 | 0.7100 | 0.7089 | | 0.2973 | 24.0 | 84 | 0.6446 | 0.7342 | | 0.2973 | 24.8571 | 87 | 0.6294 | 0.7342 | | 0.2647 | 26.0 | 91 | 0.5988 | 0.7342 | | 0.2647 | 26.8571 | 94 | 0.5256 | 0.7342 | | 0.2647 | 28.0 | 98 | 0.6628 | 0.7595 | | 0.2527 | 28.8571 | 101 | 0.5054 | 0.7595 | | 0.2527 | 30.0 | 105 | 0.7632 | 0.7595 | | 0.2527 | 30.8571 | 108 | 0.5917 | 0.7848 | | 0.2176 | 32.0 | 112 | 0.5293 | 0.7848 | | 0.2176 | 32.8571 | 115 | 0.6048 | 0.7468 | | 0.2176 | 34.0 | 119 | 0.5710 | 0.7468 | | 0.1633 | 34.8571 | 122 | 0.5901 | 0.7595 | | 0.1633 | 36.0 | 126 | 0.8161 | 0.7468 | | 0.1633 | 36.8571 | 129 | 0.7202 | 0.7468 | | 0.1753 | 38.0 | 133 | 0.8239 | 0.7215 | | 0.1753 | 38.8571 | 136 | 0.8908 | 0.7215 | | 0.1743 | 40.0 | 140 | 0.8519 | 0.7342 | | 0.1743 | 40.8571 | 143 | 1.0071 | 0.7215 | | 0.1743 | 42.0 | 147 | 0.7842 | 0.7342 | | 0.1532 | 42.8571 | 150 | 0.7827 | 0.7089 | | 0.1532 | 44.0 | 154 | 0.7150 | 0.7468 | | 0.1532 | 44.8571 | 157 | 0.6905 | 0.7595 | | 0.1526 | 46.0 | 161 | 0.9260 | 0.7089 | | 0.1526 | 46.8571 | 164 | 0.7933 | 0.7595 | | 0.1526 | 48.0 | 168 | 0.8580 | 0.7468 | | 0.1519 | 48.8571 | 171 | 0.6899 | 0.7975 | | 0.1519 | 50.0 | 175 | 0.7069 | 0.7848 | | 0.1519 | 50.8571 | 178 | 0.6741 | 0.7595 | | 0.1292 | 52.0 | 182 | 0.7183 | 0.7848 | | 0.1292 | 52.8571 | 185 | 0.8051 | 0.7468 | | 0.1292 | 54.0 | 189 | 0.6883 | 0.7722 | | 0.1305 | 54.8571 | 192 | 0.8266 | 0.7468 | | 0.1305 | 56.0 | 196 | 1.0871 | 0.7595 | | 0.1305 | 56.8571 | 199 | 0.7595 | 0.7595 | | 0.1129 | 58.0 | 203 | 0.6880 | 0.7595 | | 0.1129 | 58.8571 | 206 | 1.0676 | 0.7595 | | 0.1369 | 60.0 | 210 | 0.8078 | 0.7595 | | 0.1369 | 60.8571 | 213 | 0.7850 | 0.7595 | | 0.1369 | 62.0 | 217 | 0.6975 | 0.7722 | | 0.127 | 62.8571 | 220 | 0.7212 | 0.7595 | | 0.127 | 64.0 | 224 | 0.8967 | 0.7468 | | 0.127 | 64.8571 | 227 | 1.0046 | 0.7595 | | 0.1238 | 66.0 | 231 | 0.8611 | 0.7342 | | 0.1238 | 66.8571 | 234 | 0.9676 | 0.7975 | | 0.1238 | 68.0 | 238 | 1.3115 | 0.7215 | | 0.1068 | 68.8571 | 241 | 1.0992 | 0.7468 | | 0.1068 | 70.0 | 245 | 0.8765 | 0.7848 | | 0.1068 | 70.8571 | 248 | 0.8510 | 0.7848 | | 0.1019 | 72.0 | 252 | 0.7403 | 0.7975 | | 0.1019 | 72.8571 | 255 | 0.7459 | 0.7975 | | 0.1019 | 74.0 | 259 | 0.7705 | 0.7975 | | 0.1002 | 74.8571 | 262 | 0.7535 | 0.7975 | | 0.1002 | 76.0 | 266 | 0.7124 | 0.7722 | | 0.1002 | 76.8571 | 269 | 0.7014 | 0.7342 | | 0.1222 | 78.0 | 273 | 0.8068 | 0.7722 | | 0.1222 | 78.8571 | 276 | 0.9451 | 0.7722 | | 0.1091 | 80.0 | 280 | 1.0048 | 0.7848 | | 0.1091 | 80.8571 | 283 | 0.9518 | 0.7722 | | 0.1091 | 82.0 | 287 | 0.8575 | 0.7848 | | 0.0957 | 82.8571 | 290 | 0.8441 | 0.7848 | | 0.0957 | 84.0 | 294 | 0.8602 | 0.7848 | | 0.0957 | 84.8571 | 297 | 0.8701 | 0.7848 | | 0.1111 | 85.7143 | 300 | 0.8731 | 0.7848 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1