--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-base-distilled-patch16-224-85-fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- # deit-base-distilled-patch16-224-85-fold3 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3477 - Accuracy: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.7892 | 0.3409 | | No log | 2.0 | 4 | 0.5546 | 0.7727 | | No log | 3.0 | 6 | 0.6493 | 0.7727 | | No log | 4.0 | 8 | 0.6648 | 0.7727 | | 0.6939 | 5.0 | 10 | 0.5187 | 0.7727 | | 0.6939 | 6.0 | 12 | 0.4903 | 0.8182 | | 0.6939 | 7.0 | 14 | 0.5087 | 0.7955 | | 0.6939 | 8.0 | 16 | 0.5789 | 0.7727 | | 0.6939 | 9.0 | 18 | 0.4919 | 0.8409 | | 0.4553 | 10.0 | 20 | 0.4707 | 0.75 | | 0.4553 | 11.0 | 22 | 0.5120 | 0.8182 | | 0.4553 | 12.0 | 24 | 0.4734 | 0.75 | | 0.4553 | 13.0 | 26 | 0.4255 | 0.7727 | | 0.4553 | 14.0 | 28 | 0.3695 | 0.8636 | | 0.3658 | 15.0 | 30 | 0.3848 | 0.8182 | | 0.3658 | 16.0 | 32 | 0.3586 | 0.8409 | | 0.3658 | 17.0 | 34 | 0.4962 | 0.8409 | | 0.3658 | 18.0 | 36 | 0.3645 | 0.8636 | | 0.3658 | 19.0 | 38 | 0.3455 | 0.8864 | | 0.2667 | 20.0 | 40 | 0.3477 | 0.9091 | | 0.2667 | 21.0 | 42 | 0.3275 | 0.8864 | | 0.2667 | 22.0 | 44 | 0.3400 | 0.8864 | | 0.2667 | 23.0 | 46 | 0.3780 | 0.8864 | | 0.2667 | 24.0 | 48 | 0.4243 | 0.8409 | | 0.1794 | 25.0 | 50 | 0.4429 | 0.8409 | | 0.1794 | 26.0 | 52 | 0.5026 | 0.8409 | | 0.1794 | 27.0 | 54 | 0.4811 | 0.8409 | | 0.1794 | 28.0 | 56 | 0.4733 | 0.8182 | | 0.1794 | 29.0 | 58 | 0.4384 | 0.8636 | | 0.1861 | 30.0 | 60 | 0.4354 | 0.9091 | | 0.1861 | 31.0 | 62 | 0.4511 | 0.8864 | | 0.1861 | 32.0 | 64 | 0.3315 | 0.8636 | | 0.1861 | 33.0 | 66 | 0.3100 | 0.8864 | | 0.1861 | 34.0 | 68 | 0.3594 | 0.9091 | | 0.1521 | 35.0 | 70 | 0.4052 | 0.9091 | | 0.1521 | 36.0 | 72 | 0.3878 | 0.8864 | | 0.1521 | 37.0 | 74 | 0.3905 | 0.9091 | | 0.1521 | 38.0 | 76 | 0.4173 | 0.9091 | | 0.1521 | 39.0 | 78 | 0.4774 | 0.9091 | | 0.1333 | 40.0 | 80 | 0.5656 | 0.8864 | | 0.1333 | 41.0 | 82 | 0.5146 | 0.9091 | | 0.1333 | 42.0 | 84 | 0.4158 | 0.8636 | | 0.1333 | 43.0 | 86 | 0.4067 | 0.8636 | | 0.1333 | 44.0 | 88 | 0.4412 | 0.9091 | | 0.1297 | 45.0 | 90 | 0.4733 | 0.9091 | | 0.1297 | 46.0 | 92 | 0.4243 | 0.9091 | | 0.1297 | 47.0 | 94 | 0.4279 | 0.9091 | | 0.1297 | 48.0 | 96 | 0.4020 | 0.9091 | | 0.1297 | 49.0 | 98 | 0.3842 | 0.8636 | | 0.1038 | 50.0 | 100 | 0.3811 | 0.8409 | | 0.1038 | 51.0 | 102 | 0.3947 | 0.8636 | | 0.1038 | 52.0 | 104 | 0.4587 | 0.9091 | | 0.1038 | 53.0 | 106 | 0.4300 | 0.9091 | | 0.1038 | 54.0 | 108 | 0.3804 | 0.8636 | | 0.1101 | 55.0 | 110 | 0.4216 | 0.8636 | | 0.1101 | 56.0 | 112 | 0.3966 | 0.8636 | | 0.1101 | 57.0 | 114 | 0.4216 | 0.9091 | | 0.1101 | 58.0 | 116 | 0.4569 | 0.9091 | | 0.1101 | 59.0 | 118 | 0.4392 | 0.9091 | | 0.1085 | 60.0 | 120 | 0.4479 | 0.9091 | | 0.1085 | 61.0 | 122 | 0.4657 | 0.9091 | | 0.1085 | 62.0 | 124 | 0.5242 | 0.9091 | | 0.1085 | 63.0 | 126 | 0.5626 | 0.9091 | | 0.1085 | 64.0 | 128 | 0.5570 | 0.9091 | | 0.105 | 65.0 | 130 | 0.5035 | 0.9091 | | 0.105 | 66.0 | 132 | 0.4490 | 0.9091 | | 0.105 | 67.0 | 134 | 0.4366 | 0.9091 | | 0.105 | 68.0 | 136 | 0.4416 | 0.8636 | | 0.105 | 69.0 | 138 | 0.4597 | 0.9091 | | 0.0918 | 70.0 | 140 | 0.4795 | 0.8636 | | 0.0918 | 71.0 | 142 | 0.4922 | 0.8636 | | 0.0918 | 72.0 | 144 | 0.5078 | 0.8409 | | 0.0918 | 73.0 | 146 | 0.5089 | 0.8636 | | 0.0918 | 74.0 | 148 | 0.5109 | 0.8636 | | 0.1072 | 75.0 | 150 | 0.5125 | 0.8864 | | 0.1072 | 76.0 | 152 | 0.5267 | 0.8864 | | 0.1072 | 77.0 | 154 | 0.5346 | 0.9091 | | 0.1072 | 78.0 | 156 | 0.5291 | 0.8864 | | 0.1072 | 79.0 | 158 | 0.5188 | 0.8636 | | 0.0895 | 80.0 | 160 | 0.5222 | 0.8636 | | 0.0895 | 81.0 | 162 | 0.5319 | 0.8636 | | 0.0895 | 82.0 | 164 | 0.5475 | 0.8864 | | 0.0895 | 83.0 | 166 | 0.5576 | 0.9091 | | 0.0895 | 84.0 | 168 | 0.5441 | 0.9091 | | 0.0836 | 85.0 | 170 | 0.5266 | 0.8864 | | 0.0836 | 86.0 | 172 | 0.5047 | 0.8864 | | 0.0836 | 87.0 | 174 | 0.4888 | 0.8864 | | 0.0836 | 88.0 | 176 | 0.4824 | 0.8864 | | 0.0836 | 89.0 | 178 | 0.4814 | 0.8864 | | 0.0996 | 90.0 | 180 | 0.4823 | 0.9091 | | 0.0996 | 91.0 | 182 | 0.4826 | 0.9091 | | 0.0996 | 92.0 | 184 | 0.4841 | 0.8864 | | 0.0996 | 93.0 | 186 | 0.4880 | 0.9091 | | 0.0996 | 94.0 | 188 | 0.4879 | 0.9091 | | 0.086 | 95.0 | 190 | 0.4829 | 0.9091 | | 0.086 | 96.0 | 192 | 0.4798 | 0.8864 | | 0.086 | 97.0 | 194 | 0.4811 | 0.8864 | | 0.086 | 98.0 | 196 | 0.4819 | 0.8864 | | 0.086 | 99.0 | 198 | 0.4816 | 0.8864 | | 0.0745 | 100.0 | 200 | 0.4816 | 0.8864 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1