--- license: cc-by-nc-sa-4.0 ---

Taigi-llama-logo

# Model Card for Taigi-Llama-2-7B The Taigi-Llama-2 series are built based on the Traditional Chinese version of the LLaMA-2 model. We conducted continued pre-training on web-scraped data in Taiwanese Hokkien, including Hanzi, POJ, and Hanlo, totaling around 78MB. For more details, please refer to our [GitHub repository](https://github.com/lbh0830/TW-Hokkien-LLM/tree/main) and the paper: [Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems](https://arxiv.org/abs/2403.12024) Explore other models and datasets in the [Taiwanese Hokkien LLM collection](https://huggingface.co/collections/Bohanlu/taiwanese-hokkien-llm-6614ba7456e6789bc2f10ca0). ## Model description - **Usage:** This model can be used for causal language modeling tasks in Taiwanese Hokkien. It is also suitable for further fine-tuning on specific datasets for downstream tasks. - **Language(s) (NLP):** The primary language is Taiwanese Hokkien (Hanzi and POJ). The model also retains capabilities in English and Mandarin Chinese due to prior pre-training. - **Input:** Text - **Output:** Text - **Model Size:** 7B parameters ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline import torch import accelerate def get_pipeline(path:str, tokenizer:AutoTokenizer, accelerator:accelerate.Accelerator) -> TextGenerationPipeline: model = AutoModelForCausalLM.from_pretrained( path, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True) terminators = [tokenizer.eos_token_id, tokenizer.pad_token_id] pipeline = TextGenerationPipeline(model = model, tokenizer = tokenizer, num_workers=accelerator.state.num_processes*4, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators) return pipeline model_dir = "Bohanlu/Taigi-Llama-2-7B" # or Bohanlu/Taigi-Llama-2-13B for the 13B model tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False) accelerator = accelerate.Accelerator() pipe = get_pipeline(model_dir, tokenizer, accelerator) # Few-shot示例:問答 qa_prompt = """Example 1: 問題:台北101有偌懸? 答案:台北101的高度是五百空八公尺。 Example 2: 問題:台灣上長的溪仔是佗一條? 答案:台灣上長的溪仔是濁水溪,規个長度有百八公里遐爾長。 Example 3: 問題:臺灣上懸的山是啥物? 答案:""" print(pipe(qa_prompt, return_full_text=False)) # Output: [{'generated_text': '臺灣上懸的山是玉山,海拔三千九百五十二公尺。'}] ``` ## Citation If you find the resources in the Taiwanese Hokkien LLM collection useful in your work, please cite it using the following reference: ``` @misc{lu2024enhancing, title={Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems}, author={Bo-Han Lu and Yi-Hsuan Lin and En-Shiun Annie Lee and Richard Tzong-Han Tsai}, year={2024}, eprint={2403.12024}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```