--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT_test_graident_accumulation_test3 results: [] --- # BERT_test_graident_accumulation_test3 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0101 - Accuracy: 0.6102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 94 | 0.9398 | 0.6007 | | No log | 2.0 | 188 | 0.9191 | 0.6183 | | No log | 3.0 | 282 | 1.0101 | 0.6102 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0