--- license: openrail++ tags: - text-to-image - stable-diffusion library_name: diffusers --- # SDXL-Lightning ![Intro Image](images/intro.jpg) SDXL-Lightning is a lightning fast text-to-image generative model. It can generate high-quality 1024px images under a few steps. For more information, please refer to our paper: [SDXL-Lightning: Progressive Adversarial Diffusion Distillation](). The models are released for research purposes only. Our models are distilled from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) (coming soon). This repository contains checkpoints for 1-step, 2-step, 4-step, and 8-step distilled models. We provide both full UNet and LoRA checkpoints. The full UNet models have the best quality while the LoRA models can be applied to other base models. ## Diffusers Usage Please always use the correct checkpoint for the corresponding inference steps. ### 2-Step, 4-Step, 8-Step UNet ```python import torch from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler from huggingface_hub import hf_hub_download base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/sdxl-lightning" ckpt = "sdxl_lightning_4step_unet.pth" # Use the correct ckpt for your step setting! # Load model. pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, ckpt), map_location="cuda")) # Ensure sampler uses "trailing" timesteps. pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # Ensure using the same inference steps as the loaded model and CFG set to 0. pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png") ``` ### 2-Step, 4-Step, 8-Step LoRA ```python import torch from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler from huggingface_hub import hf_hub_download base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/sdxl-lightning" ckpt = "sdxl_lightning_4step_lora.pth" # Use the correct ckpt for your step setting! # Load model. pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.load_lora_weights(hf_hub_download(repo, ckpt)) pipe.fuse_lora() # Ensure sampler uses "trailing" timesteps. pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # Ensure using the same inference steps as the loaded model and CFG set to 0. pipe("A girl smiling", num_inference_steps=4, guidance_scale=0).images[0].save("output.png") ``` ### 1-Step UNet ```python import torch from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler from huggingface_hub import hf_hub_download base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/sdxl-lightning" ckpt = "sdxl_lightning_1step_unet.pth" # Use the correct ckpt for your step setting! # Load model. pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, ckpt), map_location="cuda")) # Ensure sampler uses "trailing" timesteps and "sample" prediction type. pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample") # Ensure using the same inference steps as the loaded model and CFG set to 0. pipe("A girl smiling", num_inference_steps=1, guidance_scale=0).images[0].save("output.png") ``` ## ComfyUI Usage Please always use the correct checkpoint for the corresponding inference steps. Please use Euler sampler with sgm_uniform scheduler. ### 2-Step, 4-Step, 8-Step UNet 1. Download the UNet checkpoint to `/ComfyUI/models/unet`. 2. Download our [ComfyUI UNet workflow](comfyui/sdxl_lightning_unet.json). ![SDXL-Lightning ComfyUI UNet Workflow](images/comfyui_unet.png) ### 2-Step, 4-Step, 8-Step LoRA 1. Download the LoRA checkpoint to `/ComfyUI/models/loras` 2. Download our [ComfyUI LoRA workflow](comfyui/sdxl_lightning_lora.json). ![SDXL-Lightning ComfyUI UNet Workflow](images/comfyui_lora.png) ### 1-Step UNet ComfyUI does not support changing model formulation to x0-prediction, so it is not usable in ComfyUI yet. Hopefully ComfyUI gets updated soon.