--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-tiny-bg results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: bg split: None args: bg metrics: - name: Wer type: wer value: 58.93870930367281 --- # whisper-tiny-bg This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8746 - Wer: 58.9387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.3458 | 3.6630 | 1000 | 0.7458 | 60.0684 | | 0.1146 | 7.3260 | 2000 | 0.7719 | 58.7417 | | 0.0475 | 10.9890 | 3000 | 0.8278 | 57.8149 | | 0.0245 | 14.6520 | 4000 | 0.8746 | 58.9387 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1