--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: resnet-50-finetuned-FER2013-0.003 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.6971301198105322 --- # resnet-50-finetuned-FER2013-0.003 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.9036 - Accuracy: 0.6971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4393 | 1.0 | 224 | 1.2746 | 0.5173 | | 1.2564 | 2.0 | 448 | 1.1456 | 0.5542 | | 1.218 | 3.0 | 672 | 1.1102 | 0.5816 | | 1.1919 | 4.0 | 896 | 1.0255 | 0.6151 | | 1.1222 | 5.0 | 1120 | 1.0257 | 0.6167 | | 1.0925 | 6.0 | 1344 | 0.9676 | 0.6317 | | 1.0241 | 7.0 | 1568 | 0.9406 | 0.6510 | | 1.0015 | 8.0 | 1792 | 0.9465 | 0.6532 | | 0.987 | 9.0 | 2016 | 0.9002 | 0.6748 | | 0.9768 | 10.0 | 2240 | 0.9086 | 0.6737 | | 0.9408 | 11.0 | 2464 | 0.8975 | 0.6793 | | 0.8907 | 12.0 | 2688 | 0.8966 | 0.6769 | | 0.8051 | 13.0 | 2912 | 0.9142 | 0.6826 | | 0.8169 | 14.0 | 3136 | 0.9082 | 0.6870 | | 0.7729 | 15.0 | 3360 | 0.9036 | 0.6971 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1