--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: resnet-50-finetuned-FER2013CKPlus-0.003 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # resnet-50-finetuned-FER2013CKPlus-0.003 This model is a fine-tuned version of [Celal11/resnet-50-finetuned-FER2013-0.003](https://huggingface.co/Celal11/resnet-50-finetuned-FER2013-0.003) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0073 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8084 | 0.97 | 27 | 0.2004 | 0.9289 | | 0.362 | 1.97 | 54 | 0.0828 | 0.9848 | | 0.2972 | 2.97 | 81 | 0.0185 | 0.9949 | | 0.1917 | 3.97 | 108 | 0.0132 | 1.0 | | 0.1572 | 4.97 | 135 | 0.0073 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1