--- base_model: openai/whisper-tiny language: - it library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Italian Combine 5k - Chee Li results: [] --- # Whisper Tiny Italian Combine 5k - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4933 - Wer: 52.2594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5398 | 0.0849 | 1000 | 0.6209 | 60.9740 | | 0.4894 | 0.1699 | 2000 | 0.5541 | 56.0544 | | 0.4558 | 0.2548 | 3000 | 0.5213 | 54.6387 | | 0.4267 | 0.3398 | 4000 | 0.5010 | 52.4281 | | 0.4225 | 0.4247 | 5000 | 0.4933 | 52.2594 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1