--- license: apache-2.0 base_model: JackFram/llama-160m tags: - generated_from_trainer metrics: - accuracy model-index: - name: llama-160m-mnli results: [] --- # llama-160m-mnli This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0860 - Accuracy: 0.4032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1021 | 1.0 | 3068 | 1.0996 | 0.3860 | | 1.0902 | 2.0 | 6136 | 1.0914 | 0.3947 | | 1.0871 | 3.0 | 9204 | 1.0878 | 0.3980 | | 1.0871 | 4.0 | 12272 | 1.0860 | 0.4032 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.13.3