--- license: mit --- ### Model Description This model is a mixture of experts merge consisting of 3 mistral based models: base model, **openchat/openchat-3.5-0106** code expert, **beowolx/CodeNinja-1.0-OpenChat-7B** math expert, **meta-math/MetaMath-Mistral-7B** This is the config used in the merging process: ``` yaml base_model: openchat/openchat-3.5-0106 experts: - source_model: openchat/openchat-3.5-0106 positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - source_model: beowolx/CodeNinja-1.0-OpenChat-7B positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - "C#" - "C++" - "debug" - "runtime" - "html" - "command" - "nodejs" - source_model: meta-math/MetaMath-Mistral-7B positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" - "calculate" - "arithmetic" - "algebra" ``` ### Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Chickaboo/Chicka-Mistral-4x7b") tokenizer = AutoTokenizer.from_pretrained("Chickaboo/Chicka-Mistral-4x7b") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ```