# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import numpy as np from batchgenerators.utilities.file_and_folder_operations import * def get_identifiers_from_splitted_files(folder: str): uniques = np.unique([i[:-12] for i in subfiles(folder, suffix='.nii.gz', join=False)]) return uniques def generate_dataset_json(output_file: str, imagesTr_dir: str, imagesTs_dir: str, modalities: Tuple, labels: dict, dataset_name: str, sort_keys=True, license: str = "hands off!", dataset_description: str = "", dataset_reference="", dataset_release='0.0'): """ :param output_file: This needs to be the full path to the dataset.json you intend to write, so output_file='DATASET_PATH/dataset.json' where the folder DATASET_PATH points to is the one with the imagesTr and labelsTr subfolders :param imagesTr_dir: path to the imagesTr folder of that dataset :param imagesTs_dir: path to the imagesTs folder of that dataset. Can be None :param modalities: tuple of strings with modality names. must be in the same order as the images (first entry corresponds to _0000.nii.gz, etc). Example: ('T1', 'T2', 'FLAIR'). :param labels: dict with int->str (key->value) mapping the label IDs to label names. Note that 0 is always supposed to be background! Example: {0: 'background', 1: 'edema', 2: 'enhancing tumor'} :param dataset_name: The name of the dataset. Can be anything you want :param sort_keys: In order to sort or not, the keys in dataset.json :param license: :param dataset_description: :param dataset_reference: website of the dataset, if available :param dataset_release: :return: """ train_identifiers = get_identifiers_from_splitted_files(imagesTr_dir) if imagesTs_dir is not None: test_identifiers = get_identifiers_from_splitted_files(imagesTs_dir) else: test_identifiers = [] json_dict = {} json_dict['name'] = dataset_name json_dict['description'] = dataset_description json_dict['tensorImageSize'] = "4D" json_dict['reference'] = dataset_reference json_dict['licence'] = license json_dict['release'] = dataset_release json_dict['modality'] = {str(i): modalities[i] for i in range(len(modalities))} json_dict['labels'] = {str(i): labels[i] for i in labels.keys()} json_dict['numTraining'] = len(train_identifiers) json_dict['numTest'] = len(test_identifiers) json_dict['training'] = [ {'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in train_identifiers] json_dict['test'] = ["./imagesTs/%s.nii.gz" % i for i in test_identifiers] if not output_file.endswith("dataset.json"): print("WARNING: output file name is not dataset.json! This may be intentional or not. You decide. " "Proceeding anyways...") save_json(json_dict, os.path.join(output_file), sort_keys=sort_keys)