import torch torch.backends.cuda.matmul.allow_tf32 = True import random from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset from transformers import TrainingArguments from trl import SFTTrainer from peft import LoraConfig import time random_seed = 42 torch.manual_seed(random_seed) random.seed(random_seed) dataset = load_dataset("Crystalcareai/Self-Discover-MM-Instruct-openai", split="train_sft") n_ahead_talk_global = 4 n_passes_global = 2 n_ahead_global = 2 n_examples = 0 def model_init(params): original = False if params is None: params = {} else: params = params.params # save params to file n_ahead = params.get("n_ahead", n_ahead_global if not original else 1) n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1) n_passes = params.get("n_passes", n_passes_global if not original else 1) gumbel_temperature = params.get("gumbel_temperature", 1) use_start_thought_token = params.get("use_start_thought_token", True) use_end_thought_token = params.get("use_end_thought_token", True) include_policy_loss = params.get("include_policy_loss", True) gumbel_detach = params.get("gumbel_detach", True) merged_talk_heads = params.get("merged_talk_heads", True) residual_think_head = params.get("residual_think_head", False) optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False) model_id = "Crystalcareai/Quiet-Star-Custom" tokenizer_id = model_id print("Loading model") model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, max_thoughts=n_ahead + n_ahead_talk + 1, merged_talk_heads=merged_talk_heads, merged_lm_and_talk_heads=False, merged_lm_and_think_heads=True, use_concat_talk_head=True, use_shallow_think=True, use_shallow_talk=False, use_complex_think_head=False, use_complex_talk_head=True, use_weighted_talk_head=True, trust_remote_code=True, device_map="auto", # load_in_4bit=True, # attn_implementation="flash_attention_2", ) print("Loaded model") tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) tokenizer.padding_side = 'left' # Adjust padding side to 'left' to avoid batch generation issues with Flash Attention tokenizer.pad_token_id = tokenizer.eos_token_id special_tokens_to_add = [] if model.use_start_thought_token: special_tokens_to_add.append("<|startthought|>") if model.use_end_thought_token: special_tokens_to_add.append("<|endthought|>") if special_tokens_to_add: tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add}) model.resize_token_embeddings(len(tokenizer)) model.tokenizer = tokenizer for name, module in model.named_modules(): if "embed" in name: print(module, flush=True) model.gumbel_detach = gumbel_detach model.include_policy_loss = include_policy_loss model.use_end_thought_token = use_end_thought_token model.use_start_thought_token = use_start_thought_token model.n_ahead = n_ahead model.n_ahead_talk = n_ahead_talk model.n_passes = n_passes model.residual_think_head = residual_think_head model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start model.gumbel_temperature = gumbel_temperature model.original_mode = original model.config_params = params model.run_start = int(time.time()) model.train() return model max_seq_length = 2048 run_id = int(time.time()) training_args = TrainingArguments( output_dir="./out", num_train_epochs=3, per_device_train_batch_size=1, gradient_checkpointing=False, gradient_accumulation_steps=16, optim="adamw_torch_fused", logging_steps=1, save_strategy="steps", save_steps=300, bf16=True, tf32=False, # epsilson=1e-05, # beta1=0.9, # beta2=0.95, # auto_find_batch_size=True learning_rate=2e-07, max_grad_norm=1.0, # Gradient clipping with a maximum gradient norm of 0.3 warmup_steps=10, lr_scheduler_type="cosine", push_to_hub=False, report_to="wandb" ) # peft_config = LoraConfig( # r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 # target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", # "gate_proj", "up_proj", "down_proj",], # lora_alpha = 16, # lora_dropout = 0, # Supports any, but = 0 is optimized # bias = "none", # Enable Dora method # use_dora=True, # ) torch.autograd.set_detect_anomaly(True) model = model_init(None) # Initialize the model tokenizer = model.tokenizer trainer = SFTTrainer( args=training_args, train_dataset=dataset, model=model, # peft_config=peft_config, tokenizer=tokenizer, max_seq_length=max_seq_length, ) trainer.train()