--- library_name: transformers tags: - mergekit - merge base_model: - allknowingroger/Qwenslerp2-14B - rombodawg/Rombos-LLM-V2.6-Qwen-14b - VAGOsolutions/SauerkrautLM-v2-14b-DPO - Qwen/Qwen2.5-14B - CultriX/Qwen2.5-14B-Wernicke model-index: - name: Qwestion-14B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 63.18 name: strict accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 48.76 name: normalized accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 31.72 name: exact match source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 15.77 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.22 name: acc_norm source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.14 name: accuracy source: url: >- https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CultriX/Qwestion-14B name: Open LLM Leaderboard license: apache-2.0 language: - en metrics: - accuracy pipeline_tag: text-generation --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base. ### Models Merged The following models were included in the merge: * [allknowingroger/Qwenslerp2-14B](https://huggingface.co/allknowingroger/Qwenslerp2-14B) * [rombodawg/Rombos-LLM-V2.6-Qwen-14b](https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b) * [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO) * [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: CultriX/Qwen2.5-14B-Wernicke parameters: weight: 0.55 # Backbone model for conversational ability and GPQA density: 0.80 # Retain most critical parameters for stability and strength - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.20 # High IFEval and MMLU-PRO performance with minimized weaknesses density: 0.60 # Focus on impactful parameters for specific benchmarks - model: rombodawg/Rombos-LLM-V2.6-Qwen-14b parameters: weight: 0.25 # Enhanced emphasis on reasoning-heavy tasks like MUSR and MATH density: 0.70 # Retain reasoning-intensive parameters for improved benchmarks - model: allknowingroger/Qwenslerp2-14B parameters: weight: 0.15 # General stabilizer for consistency across all tasks density: 0.65 # Focus on balance and avoiding redundancy base_model: Qwen/Qwen2.5-14B merge_method: dare_ties parameters: normalize: true # Ensure parameter scale consistency int8_mask: true # Optimize for memory and compute efficiency dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct adaptive_merge_parameters: task_weights: IFEval: 1.0 # Maintain high IFEval performance MATH: 1.3 # Prioritize reasoning and calculation-heavy tasks GPQA: 1.1 # Boost factual recall and reasoning accuracy MUSR: 1.2 # Enhance logical reasoning and factual understanding MMLU-PRO: 1.0 # Retain consistent knowledge representation smoothing_factor: 0.15 # Fine-tune blending for stable transitions between tasks gradient_clipping: 1.0 # Prevent over-contribution from any single model ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CultriX__Qwestion-14B) | Metric |Value| |-------------------|----:| |Avg. |37.63| |IFEval (0-Shot) |63.18| |BBH (3-Shot) |48.76| |MATH Lvl 5 (4-Shot)|31.72| |GPQA (0-shot) |15.77| |MuSR (0-shot) |17.22| |MMLU-PRO (5-shot) |49.14|