import os from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer model_path = "D1rtyB1rd/Dirty-Alice-Tiny-1.1B-V2" model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Define the stop token and system message stop_token_id = 2 ## system_message = "<|system|>\nYou are Alice.\n" def chat_with_model(prompt_text, stop_token_id, model, tokenizer): # Encode the prompt text encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt") # Generate response output_sequences = model.generate( input_ids=encoded_prompt, max_new_tokens=1024, temperature=0.2, repetition_penalty=1.2, top_k=20, top_p=0.9, do_sample=True, num_return_sequences=1, eos_token_id=stop_token_id, ) # Decode the generated sequence generated_sequence = output_sequences[0].tolist() text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) # Find the position of the stop token and truncate if necessary stop_token_str = tokenizer.decode([stop_token_id], clean_up_tokenization_spaces=True) if stop_token_str in text: text = text.split(stop_token_str)[0] # Remove text after the stop token response_text = text[len(prompt_text):].strip() # Extract only the response text return response_text def build_prompt(conversation_history, user_input): """ Constructs the prompt for the model using conversation history and the latest user input. """ prompt_text = f"{conversation_history}\n<|user|>\n{user_input}\n\n<|assistant|>\n" return prompt_text def main(): # Initialize conversation history with the system message conversation_history = f"{system_message}\n" # Chat loop while True: user_input = input("User: ") # Get text input from the user # Construct prompt text for model input prompt_text = build_prompt(conversation_history, user_input) response_text = chat_with_model(prompt_text, stop_token_id, model, tokenizer) response_text = response_text.replace('', '') print(f"\n------\nAlice:\n{response_text}\n------") # Update conversation history conversation_history += f"<|user|>\n{user_input}\n\n<|assistant|>\n{response_text}\n\n" # Trim the conversation history to avoid overly long inputs if len(conversation_history) > 2048: conversation_history = conversation_history[-1024:] if __name__ == "__main__": main()