--- title: TransGPT-7b emoji: 📚 colorFrom: gray colorTo: red language: - zh tags: - chatglm - pytorch - zh - Text2Text-Generation license: "other" widget: - text: "我想了解如何申请和更新驾驶证?" --- # TransGPT **发布中文TransGPT(7B)模型** test case: |input_text|predict| |:-- |:--- | |我想了解如何申请和更新驾驶证?|你可以到当地的交通管理部门或者公安局办理相关手续。具体流程可以在官方网站上查询。| # 文件校验 ``` md5sum ./* ``` ``` e618653f90f163928316858e95bd54d1 ./config.json b1eb3650cbc84466fed263a9f0dff5e2 ./generation_config.json 570159d90b39554713e9702b9107928a ./pytorch_model-00001-of-00002.bin 8788671a726d25b192134909fb825e0b ./pytorch_model-00002-of-00002.bin 604e0ba32b2cb7df8d8a3d13bddc93fe ./pytorch_model.bin.index.json 413c7f9a8a6517c52c937eed27f18847 ./special_tokens_map.json 2ba2be903e87d7471bbc413e041e70e8 ./tokenizer_config.json 39afcc4541e7931ef0d561ac6e216586 ./tokenizer.model ``` ## Usage First, you pass your input through the transformer model, then you get the generated sentence. Install package: ``` pip install sentencepiece pip install transformers>=4.28.0 ``` ```python import torch import transformers from transformers import LlamaTokenizer, LlamaForCausalLM def generate_prompt(text): return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {text} ### Response:""" checkpoint="DUOMO-Lab/TransGPT-v0" tokenizer = LlamaTokenizer.from_pretrained(checkpoint) model = LlamaForCausalLM.from_pretrained(checkpoint).half().cuda() model.eval() text = '我想了解如何申请和更新驾驶证?' prompt = generate_prompt(text) input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda') with torch.no_grad(): output_ids = model.generate( input_ids=input_ids, max_new_tokens=1024, temperature=1, top_k=20, top_p=0.9, repetition_penalty=1.15 ).cuda() output = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(output.replace(text, '').strip()) ``` output: ```shell 我想了解如何申请和更新驾驶证? ``` ## 模型来源 release合并后的模型权重。 HuggingFace版本权重(.bin文件)可用于: - 使用Transformers进行训练和推理 - 使用text-generation-webui搭建界面 PyTorch版本权重(.pth文件)可用于: - 使用llama.cpp工具进行量化和部署 模型文件组成: ``` TransGPT config.json generation_config.json pytorch_model-00001-of-00002.bin pytorch_model-00002-of-00002.bin pytorch_model.bin.index.json special_tokens_map.json tokenizer.json tokenizer.model tokenizer_config.json ``` 硬件要求:14G显存 ### 微调数据集 1. ~34.6万条文本数据集(用于领域内预训练):[DUOMO-Lab/TransGPT-pt](https://huggingface.co/datasets/DUOMO-Lab/TransGPT-pt) 2. ~5.6万条对话数据(用于微调):[finetune_data](https://huggingface.co/data/finetune) 如果需要训练LLaMA模型,请参考[https://github.com/DUOMO/TransGPT](https://github.com/DUOMO/TransGPT) ## Citation ```latex @software{TransGPT, author = {Wang Peng}, title = {DUOMO/TransGPT}, year = {2023}, url = {https://github.com/DUOMO/TransGPT}, } ``` ## Reference - https://github.com/shibing624/textgen